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Abstract

In this thesis, we study two network cooperative models in the fields of evolution-
ary game theory and opinion dynamics. First, we consider an allocation problem
motivated by peer-to-peer cloud storage models. The setting is that of a network of
units (e.g. computers) that collaborate and offer each other space for the back up
of the data of each unit. We formulate the problem as an optimization problem, we
cast it into a game theoretic setting and we then propose a decentralized allocation
algorithm based on the log-linear learning rule. Our main technical result is to prove
the convergence of the algorithm to the optimal allocation. Moreover, we include
some interest variants including a mechanism to avoid selfish behaviors and the
possibility to allocate more copies of the date, enforcing the security of the storage.
We give some bounds on the allocation time and present some simulations that show
the feasibility of our solution and corroborate the theoretical results.

On the other hand, the second part of the thesis is devoted to the wisdom of a
crowd. Naive learning, in particular, is a recent elegant model for the wisdom of
crowds phenomenon. In this model, a large population loses its wisdom when a group
of individuals has outsize influence in the consensus outcome of an opinion formation
process. In this thesis we introduce and characterize a finite-time version of the naive
learning model. Instead of requiring complete convergence to consensus, we study a
finite-time opinion formation process and establish the notion of prominent families
in this context. Surprisingly, finite-time wisdom is strictly distinct from its infinite-
time version. We provide a comprehensive treatment of various finite-time wisdom
notions, counterexamples to meaningful conjectures, and a complete characterization
of equal-neighbor averaging models.
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Introduction

A multi-agent system is a system composed of multiple interacting intelligent agents
within a certain environment. Topics in which the multi agents system approach
can be applied include online trading, disaster response, modeling social structures,
cooperation and coordination, distributed constraint optimization and multi-agent
learning. The fields in which we study multi agents system are Game theory and
network dynamics.
Game Theory is the field of mathematics that studies situations in which decision-
makers interact with one another, and in which the behavior and the welfare of each
of them depends also on the decisions made by the other participants. On the other
hand, social network are primary conduits of opinion and informations, they carry
news about products, influence decisions and drive political opinions toward other
groups. In both these research topics it is important to understand how beliefs change
through time, how these changes depend on the network structure and whether the
final outcome is reasonable.
In this thesis we include two different contributions. In the first part, we study an
application of evolutionary game theory to a network cloud storage model while, in
the very final chapters, we focus on the research of conditions for a network to be
wise. In this introduction chapter we discuss the motivations that lead us to these
studies and the main theoretical results obtained in both the subjects. The analysis
of the cloud storage model was previously presented in [9] while the work on the
wisdom of crowds is presented in [6].

The decentralized cloud storage model. Cloud storage on the Internet has come
to rely almost exclusively on data providers serving as trusted third parties to transfer
and store the data. While the system works well enough in most cases, it still suffers
from the inherent weaknesses of the trust-based model. The traditional cloud is open
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to a variety of security threats, including man-in-the-middle attacks, and malware
that expose sensitive and private consumer and corporate data. Furthermore, current
cloud storage applications are charging large premiums on data storage facilities to
business clients. Moreover, these cloud storage providers may have technical failures
that can cause data breaches and unavailability, much to the distress of the users and
applications that depend on them.
To address the aforementioned shortcomings, a decentralized peer-to-peer cloud
storage model would be the right answer. On the wake of the successful peer-to-
peer file sharing model of applications like BitTorrent and its lookalike, the same
philosophy may well be leveraged on a different but very similar application service
like storage. Indeed a slew of fledgling and somehow successful startups are entering
in this market niche. Among the most noteworthy examples are:

• Storj: www.youtube.com/channel/UC-cTEqWwZV5Rl-h0RZsp2Qw [40],

• BitTorrent Sync: www.getsync.com/ [32],

• Ethos: www.youtube.com/watch?v=qUftGCQ5dqo,

• SpaceMonkeys: www.spacemonkey.com/,

• Sia: http://sia.tech [39].

Clearly, a completely decentralized peer-to-peer model must account for some chal-
lenging technical difficulties that are absent in a centralized cloud model. Firstly,
security and privacy must be carefully implemented by ensuring end-to-end en-
cryption resistant to attackers. In addition, the model must account for the latency,
performance, and downtime of average user devices.
Albeit the above technical issues are challenging, they can be addressed with the
right tools and architectures available at current state of the art technology and will
not be considered in this thesis. What remains an open question up to now is how to
endow the system with the right incentives for the end users to collaborate and share
their storage commodity with each other.
We believe that the answer to that question comes from the formal framework of
game-theory. First, it can be applied to the real world. Second, it provides the
mathematical tools to study an ongoing phenomenon (this is the typical setting of
social and psychological sciences). Third, it allows to design specific mechanisms,
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i.e. set rules of the game to ensure successful cooperation among users/players (more
engineering approach).

In order to solve the optimization problem in a scalable decentralized fashion
we cast the allocation problem into a game theoretic framework and we make use of
evolutionary game theory to design the algorithm.

In the last decade, game theory has emerged as a new fundamental paradigma
to solve distributed optimization problems and, more in general, in the design and
control of large scale networked engineering systems [15, 20, 25, 22]. The basic
idea is that of modeling system units as rational agents whose behavior consists in
a selfish search for their maximum utility. The goal is to design both the agents
utility functions and an adaptation rule (evolutionary game dynamics) in such a
way that the resulting global behavior is desirable. One of the advantages of this
approach with respect to classical global optimization techniques is that it naturally
leads to scalable decentralized solutions that can easily incorporate constraints on
the computational power of the units as well as the information flow determined by
the network architecture.

Two are the challenging issues when (evolutionary) game theory is used as a
design mechanism: first, designing admissible agent utility functions such that the
resulting game possesses desirable Nash equilibria; second, designing adaptation
rules that guarantee the solution’s convergence to such Nash equilibria.

Recently, cooperative storage cloud models based on peer-to-peer architectures
have been proposed as valid alternatives to traditional centralized cloud storage
services. The idea is quite simple: instead of using dedicated servers for the storage
of data, the participants themselves offer space available on their connected devices
to host data from other users. In this way, each participant has two distinct roles:
that of a unit that needs external storage to securely back up its data, and that of
a resource available for the back up of data of other users. This approach has in
principle a number of relevant advantages with respect to traditional cloud storage
models. First, it eliminates the need for a significant dedicated hardware investment
so that the service should be available at (order of magnitude) lower cost. Second, it
overcomes the typical problems related to the use of a single external provider as
security threats or fragility with respect to technical failures.
In this thesis, we consider a network of units (PC’s but possibly also smartphones
or other devices possessing storage capabilities) which need to store externally a
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back up of their data and, at the same time, can offer space available to store data of
other connected units. In this set up, we cast the peer-to-peer storage model to an
allocation Potential Game [27] and we propose an original decentralized algorithm
which make units interact, cooperate, and store a complete back up of their data on
their connected neighbors.
Units are assumed to be connected through a network and, autonomously, at random
time, to activate and allocate or move their data pieces among the neighboring units.
Formally, each unit has a utility function which gives a value to their neighbors on
the basis of their reliability, their current congestion (resources have bounded storage
capabilities), and the amount of data the unit has already stored in them.

Allocation games have been extensively studied [38, 18]. One of the key features
of our model is the presence of hard constraints as a consequence of the bounded
storage capabilities of the units. This property is non-classical in game theory and
has remarkable consequences on the structure of Nash equilibria and the behavior
of the algorithm. Even though the proposed game is shown to be a potential game,
the convergence of the best response dynamics is here a subtle issue that does not
follow from classical results. In fact, we propose an algorithm based on a noisy best
response action: each time a unit activates, it decides the neighbor to use on the
basis of a Gibbs probability distribution having its peak on the maxima of the utility
function.
In this model, there is no need for central supervision and it can easily incorporate
features that we want the system to possess depending on the application, as for
instance, enforcing structure on the way data of each unit is treated (aggregate or
rather disgregate in the back up process), avoiding congestion phenomena in the use
of the resources, differentiate among resources on the basis of their reliability.

We want to remark that the type of functionals considered are typically non-
convex (even when relaxed to continuous variables) so that many algorithms for
distributed optimization may fail to converge to the global maximum. In addition,
the proposed algorithm presents a number of interesting features. The algorithm is
decentralized and adapted to any predefined graph. For the cloud application we
have in mind, the choice of the graph topology can be seen as a design parameter that
allows to control the computational complexity at the units level. It is asyncronous
and it is robust with respect to temporary disconnection of units. Moreover, it is
intrinsically open-ended: if new data or new units enters into the system, a new
run of the algorithm will automatically permit the allocation of the new data and,
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possibly, the redistribution of the data stored by the old units to take advantage of
new available space.

For an important class of games known as potential games, a popular adaptation
rule is the so-called noisy best-response where units choose their state by following
a Gibbs-Boltzmann distribution having its peak on the maxima of the utility function
[20]. For optimization purposes, an interesting strategy [22, 26] is to design utility
functions so to yield a potential game whose potential coincide with the reward
functional of the problem and then consider noisy best response dynamics (also
known as log-linear learning dynamics) [25, 24]. This rule can be proven to yield
convergence, asymptotically in time and in the limit of the noise approaching zero,
to maxima of the potential that form a subclass of the Nash equilibria. In this context,
the goal is to design utility functions in such a way that the potential (in particular,
its maxima) have the desired global properties. The noisy best-response turns out to
be a random decentralized scheme for the maximization of the potential. Following
classical evolutionary game theory [35], we propose an algorithm based on a noisy
best response action: each time a unit activates, it decides the neighbor to use on the
basis of a Gibbs probability distribution having its peak on the maxima of the utility
function.

Under certain assumptions, this rule is known to lead to a time-reversible ergodic
Markov chain whose invariant probability distribution is a Gibbs measure with
energy function described by the potential. For a very general family of functionals
having an additive separable form, namely that can be expressed as sums of terms
depending on the various units, we define a game by setting the utility function
of each unit as simply the sum of those addends in the functional involving the
unit itself and its neighbors, while the action set of a unit consists of the vectors
describing the allocation among its various neighbors. The game so defined is easily
shown to be potential with potential given by the original functional. The game,
however, possesses a key critical feature: because of the hard storage constraints
of the various resources, units are not free to choose their actions as they want,
but they are constrained from the choice made by other units. For instance, if a
unit is saturating the space available in a certain resource, other units connected to
the same resource will not be able to use it. In cooperative cloud storage models
where resources are common users, this hard storage constraint is a very natural
assumption and can not be relaxed. This property is non-classical in game theory and
has remarkable consequences on the structure of Nash equilibria and the behavior of
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the noisy best response dynamics that is not guaranteed in general to approximate
the optimum.

Since the first description of the algorithm include only the realistic assumption
that resources can be in functional state off, we study some variations of the algorithm
that make the approach more interesting and trustworthy.

First, we are interested in the behavior of the units so that a selfish user (who
never accept the allocation from others) can be penalized or even excluded from the
network. To this aim, the algorithm will include a reciprocity process in which users
evaluate themselves and, as resources, have the possibility to deny the allocation from
a unit. Indeed, we show that a selfish user who always deny allocation from others,
remains excluded and cannot complete his/her backup. Clearly this phenomena
happen in a reasonable amount of time; for longer amount of time the algorithm
still guarantee the full allocation. The importance of reputation and trust is out of
question in both human and virtual societies: reputation-based systems are used
to establish trust among agents on a network in a wide set of applications [36, 30,
19]. In our approach the agents themselves are capable of punishing non-desirable
behaviors, by for instance, not selecting certain resources. For this variation we
describe the possible probabilities of acceptance, meaning the probability that a
resource will accept the storage from a user; these probabilities represent different
aspects of the reliability of the users and take into consideration also the previous
interactions. Moreover, we prove the convergence of this algorithm with reciprocity
to an allocation state with probability 1 following the analysis of the original case.

A second variation of the algorithm instead deals with the fact that units may
want to allocate multiple copies of the data to enforce the security of the allocated
data from external attacks. The multiple copies allocation leads to a more secure
storage of the data and increase the probability of recovering them. The difficulties
in this approach are related to the fact that a diversification of the storage is needed.
Namely, since we want different copies of the same data to be stored in different
resources, the algorithm has a constraint on the resource choice. This result in the
addition of a constraint in the model that influence not only the allocation conditions
and the characterization of the Nash equilibria but also the analysis of the algorithm.

Since we are studying an allocation problem, not only it is important to under-
stand whether the allocation is possible but also if it is doable in a reasonable amount
of time. For this reason, we will focus on the estimation of the allocation time. We
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analyze the different algorithms in order to give the average allocation time (when
possible) or at least some bounds. What makes this task hard is the fact that standard
techniques [21] to compute the absorbing time of the underlying Markov Chain are
not always applicable. This is why we resort to the Coupon Collector’s problem [21]
to find an upper bound on the allocation time.

Given our algorithm and its variation, the main theoretical results of this model
are the following.

• We show the equivalence of the allocation problem with a classical matching
problem on a graph. This allows us to use the celebrated Hall’s theorem and
give a necessary and sufficient condition for the allocation problem to be
solvable. While this condition is true also in the algorithm with reciprocity, it
does not hold in the multiple copies algorithm. For this last case, we state and
motivate a conjecture with an equivalent condition.

• We characterize (when possible) the Nash equilibria of the game taking into
account desirable features as the level of fragmentation of the data

• We prove that all units complete their allocation in finite time with probability
one and that the allocation configuration converges, when the noise parameter
approaches 0, to a maximum of the potential (that is also a Nash equilibria).
This guarantees that the solution will indeed be close to the global welfare of
the community.

For its definition, our problem fits into the wide class of distributed resource
allocation problems. Among the many applications where such problems arise
in a similar form to the one proposed in this thesis, we can cite cloud computing
[18], network routing [34], vehicle target assignment [2], content distribution [13],
graph coloring [29]. The game theoretic approach to allocation problems and the
consequent design of distributed algorithms has been systematically addressed in
[26, 22, 25, 24] where general techniques for the choice of the utility functions and
of the dynamic learning rule have been proposed.

The model proposed in this thesis and the algorithm based on noisy best response
dynamics, is inspired by this literature. A key aspect of our model that makes it
different from the models treated in the above literature is the fact that resources have
hard storage limitations. This is a natural feature of the distributed cloud storage
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problem considered in this work and that, to our knowledge, had not been widely
analyzed [28, 33].

Finite-time wisdom of crowds and naive learning. The last chapter of this thesis
is devoted to the wisdom of crowds. This topic has recently become of particular
interest. While most of the work related to social interaction are focused on the
network properties of the underlying graph [8, 14], in this work we will focus on the
outcome of the dynamic.

Social networks typically consist of a graph where each node possesses a state
variable; the interconnection between the individuals depends on the edges in the
underlying graph [8]. Imagine that a number of individuals possess an information
represented by a real number (for instance an opinion on a given fact); agents interact
and change their opinion by averaging with the opinions of other individuals. Under
certain assumptions this will lead the community to converge to a consensus opinion.
In social sciences, empiric evidence [12] has shown how such aggregate opinion
may give a very good estimation of unknown quantities: such phenomenon has been
proposed in the literature as wisdom of crowds [37].

Social scientists describe as wisdom of crowds the phenomenon whereby large
groups of people are collectively smarter than single individuals. Much research has
focused on understanding the conditions under which such a phenomenon occurs.
The assumption on the required condition generally include diversity of opinions,
independence of opinions, and a system that aggregates individual opinions without
introducing bias. Indeed, one plausible explanation for this phenomenon in certain
estimation tasks is that: each individual opinion is influenced by a independent zero-
mean noise and, therefore, taking averages of large numbers of individual opinions
will reduce the effect of noise simply due to the law of large numbers.

So it is natural to study the conditions under which an influence system enhances
or diminishes the wisdom of crowd effect. Motivated precisely by such reasoning, an
insightful naive learning model was recently proposed by Golub and Jackson [14];
in this model, a crowd is wise if, starting from individual estimates influenced by
independent zero-mean noise, its asymptotic consensus value is equal to the unknown
parameter.

Our work is a contribution to the naive learning model; instead of requiring
that the opinion formation process is allowed infinite time in order for the crowd
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to reach consensus, we here investigate the crowd’s finite-time wisdom. For such
finite-time settings, we aim to define a number of wisdom notions, provide rigorous
characterizations, and work out instructive examples.

Aristotle is thought to be the first one who wrote about the ’Wisdom of the crowd’
in his work titled ’Politics’ while in recent years, Surowiecki’s book [37] has widely
popularized the concept. The most famous example is not quite recent and concerns
the weight of an ox: the experiment took place at a 1906 country fair in Plymouth
where 800 people participated in a contest to estimate the weight of a slaughtered
and dressed ox. Statistician Francis Galton [12] observed that the median guess was
indeed remarkably close to its correct value.

This has contributed to the insight in cognitive science that a crowd’s individual
judgments can be modeled as a probability distribution of responses with the median
centered near the true value of the quantity to be estimated. On the other hand, it is
possible to find in literature experiments in which the aggregate opinion is not close
to the real value, depending on how the agents are susceptible to the social influence
[23].

The literature on opinion dynamics and influence systems is very rich. The classic
French-DeGroot averaging model is discussed in the text on influence systems by
Friedkin and Johnsen [11], the text on social networks by Jackson [16], and the
recent survey by Proskurnikov and Tempo [31]. Inextricably linked with influence
systems is the concept of centrality in its various incarnations. Especially relevant to
this work is the notion of the eigenvector centrality, e.g., see the foundational works
by Bonacich [4] and Friedkin [10].

The phenomenon of wisdom of crowds is related also to the topic of social
learning. We refer to the original work [14] for an insightful comparison between
the naive learning approach and other distinct methods. We here only outline two
alternative approaches. First, Acemoglu et al [1] present a game-theoretical model
for sequential learning; even in this setup the presence of “excessively influential
agents” is an impediment to social learning. Second, the social learning model
proposed by Jadbabaie et al [17] is based on the constant arrival of new information
(i.e., a feature our model does not have) and shows that new information together
with basic connectivity properties is sufficient to overcome the influence of any
individual agent.
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The understanding of whether social influence processes enhance or diminishes
the wisdom of a crowd continues to be of very recent interest and debate. Lorenz et
al [23] describe an empirical study in which the influence system diminishes the
accuracy of the collective estimate by diminishing diversity of the crowd (even while
conducing the opinions closer to consensus). In contrast, Becker et al [3] present
theoretical and empirical evidence about settings in which the influence system
enhances the wisdom of the crowd.

In Chapter 7, we start by reviewing the naive learning model for large populations
proposed by Golub and Jackson [14] and based on the French-DeGroot opinion
formation process. In this model, the population is wise if the final (in the limit as
time k → ∞) consensus opinion is equal to the correct value. This property is cast in
terms of the left dominant eigenvector of the influence matrix in large populations
(i.e., in the limit as the number of individual n → ∞).

In this thesis we consider a variation of the naive learning setting in which
the French-DeGroot opinion formation process is allowed only in finite time and
does not, therefore, reach completion. The social structure of the DeGroot model
is described by a weighted and possibly directed network. Agents have beliefs
about some common question of interest, communicate with their neighbors in the
network and update their opinion. An agent’s new belief is the weighted average
of her neighbors’ opinion from the previous instant of time. Over time, provided
some connectivity and aperiodicity condition on the underlying graph [7, 5], beliefs
converge to a consensus. Our individuals do not reach consensus and, in this thesis,
a population is finite-time wise if the average of the individuals opinion remains
correct as time progresses along the opinion dynamics process. In other words, [14]
considers wisdom in the limit in which n → ∞ after k → ∞, we here consider the
limit in which n → ∞ after at k = 1, k fixed, and uniformly over k. We argue that
these finite-time variation are especially relevant for large population, since it is
known that the time required for consensus to be approximately achieved typically
diverges as the population size diverges. It is therefore of interest to assume that
no enough time is provided to the opinion formation process to achieve complete
consensus and inquire what are wise sequences under this relaxed condition.

Given this premise, the last chapter of this thesis makes four main contributions.
First, for our proposed finite-time setting we introduce the notions of one-time
wisdom, finite-time wisdom, uniform wisdom, and pre-uniform wisdom. We provide
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necessary and sufficient characterizations of one-time and finite-time wisdom in
terms of the limiting value of the maximum column averages of the matrix sequence.
We also provide a sufficient condition for uniform wisdom involving the same
limiting value as well as the limiting value of the matrices’ mixing time.

Second, we provide numerous detailed examples of graph families to establish,
among other relationships, that finite-time wisdom neither implies nor is implied by
wisdom, as previously defined. Our examples illustrate how various general implica-
tions among the various wisdom notions are tight. Our examples also demonstrate
that the proposed notions of one-time and finite-time wisdom are meaningful and
strictly distinct from the notion of (infinite-time) wisdom as defined by Golub and
Jackson [14].

Third, we provide a sufficient condition to ensure that a sequence of row-
stochastic matrices is indeed finite-time wise. We introduce an appropriate novel
notion of prominent family and show how its absence implies finite-time wisdom
in general. Roughly speaking, a collection of nodes (a family) is prominent if, in
the limit of large population, its size is negligible (that is, of order o(n)) but its total
accorded one-time influence is not (that is, of order 1 in n).

Fourth, we then extend our sufficient condition to the setting of equal-neighbor
sequences of row-stochastic matrices. For such highly-structured case, we show
that the absence of prominent individuals is a necessary and sufficient condition for
finite-time wisdom, pre-uniform wisdom, and wisdom in the equal-neighbor setting.
In other words, we completely characterize finite-time wisdom in the equal-neighbor
setting.

Thesis organization. The thesis is structured as follows. Chapter 1 collect the
mathematical notions necessary for understanding this work. In particular, it is
focused on Game Theory and Graph Theory with their basic definitions. In Chapter
2, we describe the cloud storage model and give the details of the algorithm in its
primary form. The reciprocity process is introduced in Chapter 3 where we give
more details on the reputation based algorithms present in literature. The analysis
of the allocation time is done in Chapter 4. This is the only chapter that include a
set of simulations that verifies the obtained estimations. Chapter 5 is devoted to the
formulation of the problem with multiple copies and its analysis. The last chapter
of the cloud storage problem is Chapter 6: it is devoted to the presentation of an
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extensive set of simulations that corroborate the theoretical results, prove the good
scalability properties of the algorithm in terms of speed and complexity, and illustrate
the influence of the parameters of the utility functions in the solution reached by the
algorithm. The last two chapters deal with the wisdom of crowds; it includes the
main results and a wide set of examples. A conclusion chapter ends the thesis.
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Chapter 1

Preliminaries

In this chapter we give some basic definitions to introduce the reader to the terminol-
ogy and notation of the thesis. We start with Game Theory and we end the chapter
with some definitions from Graph Theory and Markov chains.

1.1 Game Theory

Game Theory is the field of mathematics that studies situations in which decision-
makers interact with one another, and in which the happiness of each of them depends
also on the decisions made by the other participants. One of the first subject in which
Game Theory have found application is economic theory [18]. The approach of
game theory in this field is fundamental because it allows the analysis of the behavior
of the individuals of the economic community.

In general, a game is described by the following three features [3]:

• There is a set of participants, who are usually called the players. In this thesis
we will also use the terms agents and users. The set of players is indicated
with X = {1, . . . ,n} where n ∈ N is the number of agents. In this case, the
game is called n-person game.

• Each player has a set of action from which he/she can choose; we will refer
to these as the possible strategies of a player. In general, the actions sets are
indicated with A1, . . . ,An being 1, . . . ,n the users; the sets of strategies are
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supposed to be non-empty. The strategy of player i is usually indicate with ai;
we use a−i to indicate the actions played by all the players except i.

• For each choice of strategies, each player receives a payoff that can depend
on the strategies selected by everyone. The payoffs are generally numbers but
depending on the case, it can be preferable to maximize or minimize it. In
general, we denote with the symbol Ui the payoff of player i ∈ X .

Since this aspects characterize the game, modeling the interaction framework as
a strategic form game involves specifying the decision makers, their respective
strategies, and a payoff function for each agent.
In general, we assume that everything a player cares about is summarized in the
utility. However, nothing in the framework of game theory requires that players care
only about their own personal rewards. Anyway, once the payoffs have been defined,
they should constitute a complete description of the happiness of each player for all
the possible outcomes of the game.
In some cases it seems reasonable to assume that each player also knows the structure
of the network, the other players and their strategies or their payoffs. However,
this knowledge is not essential. In this thesis for example, the players will have
knowledge only of a part of the network and of their own strategies. Moreover, each
player is assumed to be rational, meaning that he/she acts to maximize his/her payoff
given what he/she knows. Clearly, Game theory has many elements in common with
an optimization problem [18]. The difference is in the fact that in game theory to
obtain an optimum result a player must relate with others. The problem is in fact a
mixture of conflicting optimization problems (one for each player). Furthermore, we
suppose that each player actually succeeds in selecting the optimal strategy. This
seems reasonable in simple settings or for experienced players, while it is not in
complex games, or games played by inexperienced players. The part of game theory
that relates with players who make mistakes and learn during the game is know as
Evolutionary Game Theory and we will talk about this later in this section.
Now we give some basic notions, starting from the definition of a one-shot game. A
game is called one-shot game [5] if it is played once. In general, it can be represented
by a matrix. We say that a player has a strictly dominant strategy if he/she has a
strategy that is strictly better than all other options regardless of what the other player
choose. When a player has a strictly dominant strategy, we should expect that they
will play it (it follows from the fact that the players are rational).
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In 1950, John Nash [13] proposed a simple but powerful principle for reasoning about
behavior in general games. Normally, we should expect players to use strategies that
are best responses to each other. More precisely, suppose that Player 1 chooses a
strategy S and Player 2 chooses a strategy T. We say that this pair of strategies (S,T)
is a Nash equilibrium if S is a best response to T, and T is a best response to S [3].
The idea is that no player has an incentive to deviate to a different strategy, so that
the system is in an equilibrium state. If a pair of strategies are not best responses
to each other, the players cannot both believe that these strategies will be actually
played, as they know that at least one player would have an incentive to deviate from
it. Therefore, a Nash equilibrium can be thought of as an equilibrium in beliefs. If
each player believes that the other players will actually play a strategy that is part of a
Nash equilibrium, then he/she is willing to play his/her part of the Nash equilibrium.
Now we present an example, known as the Prisoner’s Dilemma, to clarify the defined
notions.

Example 1.1.1. The Prisoner’s Dilemma is presented as follows. Two members of a
criminal gang are arrested and imprisoned. Each prisoner is in solitary confinement
and they cannot comunicate with each other. The police lack sufficient evidence to
convict the two suspects but they hope to get both sentenced to prison. Simultaneously,
the policemen offer each prisoner a bargain. Each prisoner is given the opportunity
to: betray the other by testifying that the other committed the crime, or confess. The
offer is:

• If Player 1 and Player 2 each betray the other, each of them serves 2 years in
prison;

• If Player 1 betrays Player 2 and Player 2 confess, Player 1 will be set free and
Player 2 will serve 3 years in prison (and vice versa);

• If Player 1 and Player 2 both confess, both of them will only serve 1 year in
prison.

The payoff matrix can be written as follows; the utilities are taken negative since the
more years in prison they get, the worse it is.
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Player 1
Con f ess Betray

Player 2
Con f ess −1,−1 −3,0
Betray 0,−3 −2,−2

Since betraying offers a greater reward than cooperating, all rational self-interested
prisoners would betray the other. So the only possible outcome for two prisoners
is for them to betray each other. The interesting part of this result is that pursuing
individual reward logically leads both of the prisoners to betray, when they would
get a better reward if they both confess. Regardless of what the other decides, each
prisoner gets a higher reward by betraying the other ("defecting"). In fact, if Player
2 cooperates, Player 1 should defect, because going free is better than serving 1 year.
If Player 2 defects, Player 1 should also defect, because serving 2 years is better
than serving 3. Therefore betraying is a dominant strategy. The same reasoning
holds for Player 2.
Mutual defection is the only strong Nash equilibrium in the game. The dilemma then
is that mutual cooperation yields a better outcome than mutual defection but it is
not the rational outcome because the choice to cooperate, at the individual level, is
irrational.

Now we propose some classes of games that will be useful in this thesis. These
classes are population games, congestion games and potential games.

One can imagine many economic, social, and technological environments in
which large collections of small agents make interdependent decisions. For example
consider the traffic network where drivers commute from a place to another: the
delay each driver experiences depends not only on the route he/she selects, but also
on the other agents’ route. Otherwise, consider the market where a large number of
buyers and sellers participate in an exchange: each individual specifies the terms of
trade and hopes of obtaining the greatest benefit.
While the two example above are quite different, they have some features in com-
mon. First, each environment contains a large number of agents capable of making
independent decisions. Second, each agent is small, i.e., his/her choices have only
a minor impact on the outcomes of other agents. Third, agents are anonymous:
the outcome of an agent from the interaction depends on his own strategy and the
distribution of the other strategies. Interactions with these three properties can be
modeled using population games [16]. The population may have finite of infinite
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agents. For our purpose, we assume that there are a finite number of players, who
choose from a finite number of strategies. While some basic results, including
existence of Nash equilibrium, can be proved at this level of generality, obtaining
more specific conclusions requires certain structural properties. The subclasses of
population games that we are going to study are the class of congestion games which
provide a model of, for example, the traffic network and the class of potential games.
Any game where a set of agents have to choose from a finite set of alternatives,
and where the payoff of a player depends on the number of players choosing the
same alternative, is a congestion game. Congestion games were first proposed by
Rosenthal in 1973 [14]. Formally, a congestion game is a game where there is a set
X of n players and a set of resources R. Each player has a finite set of strategies Ai

that is a subset of R. Each resource has a cost (or delay) function which is to be
interpreted as the payoff for using a certain resource.

Example 1.1.2. Consider the traffic network where two players start at point O and
need to get to point T. Suppose that node O is connected to node T via two roads A
and B, where A is a little shorter than B. However, the more players pass through
a point the greater the delay of each player becomes, so having both players go
through the same connection point causes extra delay.

Monderer and Shapley, in 1996, created the concept of a potential game and
proved that every congestion game is a potential game [12].
In game theory, a game is said to be a potential game if the incentive of all players
to change their strategy can be expressed using a single global function called the
potential function. Formally, let n be the number of players, A the set of action
profiles over the action sets Ai of each player i ∈ X and Ui be the payoff function of
user i ∈ X . A game is an exact potential game if there exists a function Φ : A → R
such that ∀a−i ∈ A−i, ∀a′i, a′′i ∈ Ai,

Φ(a′i,a−i)−Φ(a′′i ,a−i) = ui(a′i,a−i)−ui(a′′i ,a−i)

This means that when player i switches from strategy a′ to strategy a′′, the change in
the potential equals the change in the utility of that player. This definition can be
relaxed. An ordinal potential game is a game where there exists a function Φ : A→R
such that ∀a−i ∈ A−i, ∀a′i, a′′i ∈ Ai,

Φ(a′i,a−i)−Φ(a′′i ,a−i)> 0 ⇔ ui(a′i,a−i)−ui(a′′i ,a−i)> 0.
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There are other definitions of potential games [12] that we are not discussing in this
thesis because they are not necessary for our propose.
The potential function is a useful tool to analyze equilibrium properties of games,
since the incentives of all players are mapped into one function, and the set of pure
Nash equilibria can be found by locating the local optima of the potential function.
It is clear that since the potential games always have a Nash equilibrium, also the
congestion games have one.

1.1.1 Evolutionary Game Theory

In the previous part of this section, we developed the basic ideas of game theory, in
which individual players make decisions, and the payoff to each player depends on
the decisions made by all.

In this subsection, on the other hand, game-theoretic analysis will be applied to
settings in which individuals can exhibit different forms of behavior. As its name
suggests, this approach has been applied most widely in the area of evolutionary
biology [17] but the possible applications cross many discipline, from economics to
social studies [5, 3, 16].
Talking about evolutionary game theory, we now describe two learning dynamics -
best response and noisy best response - that we will use in the rest of the thesis.
Consider a one-shot game described with its payoffs matrix. If S is the strategy
chosen by Player 1, and T is the strategy chosen by Player 2, then there is an entry in
the payoff matrix corresponding to the pair (S,T). We will write Ui(S,T ) to denote
the payoff to Player i, i = 1,2, as a result of this pair of strategies. Now, we say that
a strategy S for Player 1 is a best response to a strategy T for Player 2 if S produces
a payoff as good as any other strategy paired with T, that is

U1(S,T )≥U1(S0,T )

for all other strategies S0 of Player 1. Naturally, there is an equivalent definition
for Player 2 and strategy T . Notice that this definition allows for multiple different
strategies of Player 1 to be tied as the best response to strategy T. This can make it
difficult to predict which strategy Player 1 will use. For this reason, we introduce the
notion of strict best response. A strategy S of Player 1 is a strict best response to a
strategy T for Player 2 if S produces a strictly higher payoff than any other strategy
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paired with T:
U1(S,T )>U1(S0,T )

for all other strategies S0 of Player 1. When a player has a strict best response to T,
this is clearly the strategy she should play when faced with T.
In evolutionary game theory, best response dynamics represents a class of strategy
updating rules, where players strategies in the next round are determined by their
best responses to the strategies of the other agents. Players only choose the best
response that would give them the highest payoff on the next round. Formally, we
can describe the asynchronous best response dynamics in the following way [6]. Let
a(t) = (a1(t),a2(t), . . . ,an(t)) be the action profile at time t = 1,2, . . . At each time
t > 0 player i ∈ X is chosen at random to change his/her current action. We suppose
the the other player are not allowed to change their strategy, i.e., ai(t) = ai(t −1).
player i select an action ai(t) by choosing his/her best response to a−i(0); if there
is more than one best response action, he/she choose one of them randomly. Then,
another player is chosen to updates his/her action and so on.
Best response was first presented by Cournot in 1838 [2] and it is proven that it leads
to a Nash equilibrium in finite potential games [12].
Given the definition of best response, we can redefine the dominant strategy. A
dominant strategy for a player is a strategy that is a best response to every strategy of
the other players. Analogously, a strictly dominant strategy for a player is a strategy
that is a strict best response to every strategy of the other players.

An interesting and useful variation of the dynamics just described is the Noisy
Best Response [9, 6, 10]. It is an iterative learning algorithm and it is known also
as log-linear learning. Let a(t) represent the action profile at time t = 0,1,2, . . . . At
each time t > 0, one player i ∈ X is randomly chosen and allowed to alter his/her
current action. We suppose that the other players do not change their strategy, i.e.
a−i(t) = a−i(t −1). At time t, player i selects an action according the the following
probabilistic strategy

P[ai(t) = ai] =
e

1
τ
Ui(ai,a−i(t−1))

∑āi∈Ai e
1
τ
Ui(āi,a−i(t−1))

for any action ai ∈ Ai and temperature τ > 0. The temperature τ determines how
likely player i is to select a suboptimal action. As τ → ∞, player i will select any
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action ai ∈ Ai with equal probability. As τ → 0, player i will select a best response
to the action profile a−i(t −1), with arbitrarily high probability.

1.2 Graph Theory

A graph is a way of specifying relationships among a collection of items. It consists of
a set of objects with certain pairs of these objects connected by links. To make some
examples consider that social networks (as Facebook, Twitter, . . . ) and information
networks (as the Web) can be modeled by a graph. In the following part of the
section we give some basic definitions, mostly taken from [1, 3].
An undirected graph consists of a set V of elements called vertices (or nodes) and
of a set E of unordered pairs of vertices, called edges. For u,v ∈ V , u ̸= v, the set
{u,v} denotes an unordered edge. In Figure 1.1a it is shown a very simple example
with four nodes (V = {A,B,C,D}). To consider a bigger example, the Facebook
network can be seen as an undirected graph where the users are the nodes and the
edges represent the "friendship" relation.

A B

C

D

(a) Undirected Graph

A B

C

D

(b) Directed Graph

Fig. 1.1 Examples of graphs

A directed graph of order n is a pair G = (V,E), where V is a set with n vertices
and E is a set of ordered pairs of vertices (the edges). For u,v ∈ V , the ordered
pair (u,v) denotes an edge from u to v. Therefore, E ⊆V ×V . A directed graph is
undirected if (v,u) ∈ E anytime (u,v) ∈ E. Moreover, in a directed graph, a self-loop
is an edge from a node to itself. Figure 1.1b shows an example of a direct graph
for the set of nodes V = {A,B,C,D} which also include a self-loop in A. Another
example of direct graph is the Web where the nodes are the pages and the edges are
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the links from one page to another.
In a directed graph G with an edge (u,v) ∈ E, u is called an in-neighbor of v, and v
is called an out-neighbor of u. We let Nin(v) (respectively Nout(v)) denote the set
of in-neighbors (out-neighbors) of v. The in-degree din(v) and out-degree dout(v) of
v are the number of in-neighbors and out-neighbors of v, respectively. Note that a
self-loop at a node v makes v both an in-neighbor and an out-neighbor of itself.

A weighted directed graph is a graph G = (V,E,W ), where the pair (V,E) is a
directed graph with nodes set V and edges set E, and where W is the weight matrix,
i.e., wi j is a positive weight for the edge (i, j) ∈ E. A directed graph G = (V,E) can
be regarded as a weighted directed graph by defining its set of weights to be all equal
to 1, that is, setting wi j = 1 for all (i, j) ∈ E. A weighted directed graph is undirected
if wi j = w ji for all i, j ∈V . The notions of in- and out-degree can be generalized to
the weighted graph as follows:

dout(i) = ∑
j∈V

wi j and din(i) = ∑
j∈V

w ji

In other words, dout is the sum of the weights of al the out-edges and din is the sum
of the weights of the in-edges.

Finally, a complete graph is an undirected graph where any pair of distinct nodes
is connected by an edge; if it is a direct graph, any pair of nodes is connected by an
edge in both directions. A graph is regular if all the nodes have the same degree. In
Figure 1.2a there is a complete graph with six nodes while in Figure 1.2b there is a
cycle which is a regular graph of degree 2; notice that a complete graph is a regular
graph of degree n−1.

(a) Complete Graph (b) Cycle Graph

Fig. 1.2 Examples of graphs

A path is an ordered sequence of vertices such that any pair of consecutive
vertices in the sequence is an edge of the graph. A path is simple if no vertex appears
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more than once in it (except possibly for the initial and final vertex). A graph is
connected if there exists a path between any two vertices. Similar definitions holds
for directed graphs. A directed path is an ordered sequence of vertices such that any
pair of consecutive vertices in the sequence is a directed edge and a directed path
is simple if no vertex appears more than once in it (except possibly for the initial
and final vertex). Moreover, we say that G is strongly connected if there exists a
directed path from any node to any other node and that G is weakly connected if the
undirected version of the directed graph is connected.

1.2.1 Matching Theory

In this section we define two notions, that is, bipartite graph and matching, useful to
state the Hall’s Marriage Theorem [4] which will be cited later in the thesis.

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent
edges, none of which are loops; that is, no two edges share a common vertex [8].
A perfect matching of a graph is a matching in which every vertex of the graph
is incident to exactly one edge of the matching. A perfect matching is therefore a
matching containing n/2 edges (the largest possible), meaning perfect matchings are
only possible on graphs with an even number of vertices. A perfect matching is also
called a complete matching. Matching problems are often concerned with bipartite
graphs.

A bipartite graph is a graph whose vertices can be divided into two disjoint and
independent sets A and B such that every edge connects a vertex in A to one in B.
Vertex sets A and B are usually called the parts of the graph. Examples of bipartite
graphs are every tree graph and any cycle graph with an even number of vertices.

Fig. 1.3 Examples of bipartite graphs
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Given a bipartite graph G = (V,E) with parts A and B, for any subset X ⊆ A we
indicate with

N(X) = {y ∈ B : (x,y) ∈ E for some x ∈ A}.

We are now ready to state the theorem.

Theorem 1.2.1 (Hall). Let G = (V,E) be a finite bipartite graph with parts A and B
and such that |A|= |B|. Suppose that for all subsets X ⊆ A we have |N(X)| ≥ |X |.
Then G has a perfect matching.

The theorem takes its name for one of its possible interpretation. Imagine a group
of n men and a group of n women. For each woman, there is a subset of the men that
she would marry and any man would be engaged with a woman who wants to marry
him. The aim is to pair men and women so that every person is happy. Let A be the
set of men and B the set of women and let Ax be the the set of men that a woman x
would marry. The marriage theorem states that each woman can be engaged with
a man if and only if the marriage condition holds. The marriage condition is that,
for any subset X of the women, the number of men whom at least one of the women
would marry, |N(X)| is at least as big as the number of women in that subset, |X |. It
is obvious that this condition is necessary, as if it does not hold, there are not enough
men to share among the women but it is also a sufficient condition.

1.2.2 Markov chains

In 1907 Markov [11] began the study of a process where the outcome of an experi-
ment can affect the outcome of the next experiment. This type of process was later
called Markov chain.
Markov chains can be represented with graphs whose nodes set represent the state
space and the edges represent the possible state transitions [15]. We suppose that
whenever the process is in state i there is a fixed probability Pi j to jump in state
j. Clearly, the matrix P can be seen as the weights matrix of the graph. Formally,
a Markov chain is a stochastic process X(t), for t = 0,1, . . . , with state space X
coinciding with the node set V , and such that, for any states i and j in X

P[X(t +1) = j|X(0) = i0,X(1) = i1, . . . ,X(t −1) = it1,X(t) = i] = Pi j. (1.1)
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Equation (1.1) states that the future state X(t +1) = j is independent from the past,
i.e., from the trajectory X(0) = i0,X(1) = i1, . . . ,X(t − 1) = it−1, and that, given
the present state X(t) = i, the probability of moving from node i to node j equals
Pi j. The fact that the future state depends only on the present state is known as the
Markov property, and the process X(t) is usually called discrete-time Markov chain
with transition probability matrix P.
Since the probabilities are nonnegative and the process must jump in some state, we
have that P is a stochastic matrix, that is, a nonnegative square matrix with entries
corresponding to the elements of X and all row sums equal to 1:

Pi j ≥ 0 and ∑
j∈ V

Pi j = 1.

Moreover a discrete-time Markoc chain can be associated to an initial probability
distribution π(0) whose entries correspond to the elements of X and such that

P(X(0) = i) = πi(0), i ∈ X .

In order to determine the probability distribution of the trajectories of a Markov
chain X(t), it is necessary to specify both a transition probability matrix P and an
initial probability distribution π(0). Then, the trajectory satisfies

P(X(0) = i0,X(1) = i1, . . . ,X(t) = it) = πi0(0) ∏
i≤s≤t

Pis−1is, t ≥ 0. (1.2)

From equation (1.2), for every time t ≥ 0, recursive formulas for the marginal
probability distribution π(t) of X(t) can be derived. The entry

πi(t) := P(X(t) = i), i ∈ X ,

is the probability that the Markov chain is in node i at time t. The same holds for the
t-step transition probability matrix P(t), whose entries

Pi j(t) = P(X(t) = j|X(0) = i), i, j ∈ X ,
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indicate the conditional probability that the chain is in node j at time t given that it
was in node i at time 0. These recursive formulas can be written as

π(t +1) = PT
π(t) and P(t +1) = P(t)P,P(t +1) = PP(t)

which are known as the Chapman-Kolmogorov equations. From these, it follows that

P(t) = Pt and π(t) = π(0)Pt , t ≥ 0.

Moreover, we call a probability π satisfying

π = πP (1.3)

a stationary distribution of the Markov chain. Clearly, if π is a stationary distribution
and π(0) = π , then π(t) = π for all t ≥ 0. In this case, π is the long-term limiting
distribution of the chain. This is why we sometimes say that π is an invariant
probability distribution for P.
We say that a probability π on X satisfies the detailed balance equations if

πiPi j = π jPji for all i, j ∈ X . (1.4)

Let P be the transition matrix of a Markov chain with state space X. It can be proven
[7] that any distribution π satisfying the detailed balance equations is stationary for
P. Therefore, checking detailed balance equations is often the simplest way to verify
that a particular distribution is stationary.
We now present an example, taken from [7], to show a very simple Markov chain.

Example 1.2.2. A frog lives in a pond with two lily pads, east and west. One day, it
finds two coins at the bottom of the pond and decide to bring one up to each lily pad.
From that day, every morning, the frog decides whether to jump by tossing the coin
of the current lili pad. If the coin lands heads up, the frog jumps to the other lily pad.
Otherwise, he remains where it is. Let {e,w} be the states set, and let (X0,X1, . . .)

be the sequence of lily pads occupied by the frog. Since the coins were found at the
bottom of the pond, we should not suppose that they are fair. Therefore, the coin on
the east pad has probability p of landing heads up, while the coin on the west pad
has probability q of landing heads up. The rules of the frog for jumping imply that if
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we set

P =

(
Pee Pew

Pwe Pww

)
=

(
1− p p

q 1−q

)
,

then (X0,X1, . . .) is a Markov chain with transition matrix P. Doing some computa-
tions and since the probability distribution must be stationary, we have

πe =
q

p+q
,πw =

p
p+q

.

When a probability distribution π satisfy the detailed balance equations, it hold
that

πi0Pi0i1 · · ·Pin−1in = πinPinin−1 · · ·Pi1i0 .

In other words, if a Markov chain satisfies (1.4) and has stationary initial distri-
bution, then the distribution of (X0,X1, . . . ,Xn) is the same as the distribution of
(Xn,Xn−1, . . . ,X0). For this reason, a chain satisfying (1.4) is called reversible.

The time reversal of an irreducible Markov chain with transition matrix P and
stationary distribution π is the chain with matrix

P̄i j :=
π jPji

πi
.

The stationary equation π = πP implies that P̄ is a stochastic matrix.

Moreover, we say that a Markov chain is irreducible [7] if for any two states
i, j ∈ X there exists an integer t (possibly depending on i and j) such that Pt

i j > 0.
This means that it is possible to get from any state to any other state using only
transitions of positive probability.
Let fi be the probability that, starting in state i, the process will reenter in state i.
State i is said to be recurrent if fi = 1 and transient if fi < 1. If state i is recurrent,
the Markov property implies that the process will visit i infinitely many times. On
the other hand, if state i is transient, there is a positive probability 1− fi of never
entering again that state. Consequently, state i is recurrent if and only if the expected
number of visits to i is infinite while it is transient if the expected number of visits to
i is finite.
For an irreducible chain, the period of the chain is defined to be the period which is
common to all states. In other words [15], a state j is said to be periodic if there is
an integer d > 1 such that Pt

j j = 0 whenever d does not divide t. The minimal such
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d is called period (if this hold for all t > 0 then he period of j is infinite). State j is
aperiodic if there is no such a d > 1. The chain will be called aperiodic if all states
have period 1. If a chain is not aperiodic, we call it periodic.

A state i is said to be ergodic if it is aperiodic and positive recurrent (recurrent
and with finite mean recurrence time). If all states in an irreducible Markov chain
are ergodic, then the chain is said to be ergodic. It can be shown that a finite state
irreducible Markov chain is ergodic if it has an aperiodic state. More generally, a
Markov chain is ergodic if there is a number N such that any state can be reached
from any other state in a number of steps greater than or equal to N.
One of the most famous example of Markov chain is the birth and death chain that
we describe, following [7], in the next example.

Example 1.2.3. A birth-and-death chain has state space X = {0,1,2, . . . ,n}. In one
step the state can increase or decrease by at most 1. The current state can be thought
of as the size of a population. In a single step of the chain there can be at most one
birth or death. The transition probabilities can be described by:

• pk, the probability of moving from k to k+1 when 0 ≤ k < n,

• qk, the probability of moving from k to k−1 when 0 < k ≤ n,

• rk, the probability of remaining at k when 0 ≤ k ≤ n,

Moreover, q0 = pn = 0 and pk + qk + rk = 1 for all k. It is well known that every
birth-and-death chain is reversible.
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Chapter 2

A network cloud storage model

In this chapter we present a cooperative fully distributed algorithm through which a
network of units (e.g. computers) can collaborate and offer each other space for the
back up of the data of each unit. In this model, there is no need for central supervision
and it can easily incorporate features that we want the system to possess depending on
the application: enforcing structure on the way data of each unit is treated (aggregate
or rather disgregate), avoiding congestion phenomena, differentiate among resources
on the basis of their reliability. The algorithm was presented in a different version
without analytical results in [4].

For a very general family of functionals having an additive separable form,
namely that can be expressed as sums of terms depending on the various units,
we define a game by setting the utility function of each unit as simply the sum of
those addends in the functional involving the unit itself and its neighbors, while
the action set of a unit consists of the vectors describing the allocation among its
various neighbors. The game so defined is easily shown to be potential with potential
given by the original functional. The game, however, possesses a key critical feature:
because of the hard storage constraints of the various resources, units are not free to
choose their actions as they want, but they are constrained from the choice made by
other units.

The first result in this chapter is the proof of the existence of an allocation
with the analysis of some particular cases. The main technical contribution is to
show that, despite the hard constraints, under mild technical conditions, a family of
dynamics having their core on the log-linear learning rule converge to the desired
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solution. More precisely, by a careful analysis of the connectivity properties of the
transition graph associated to the Markov process, we will obtain two results, stated
in Theorem 2.3.2 and Corollary 2.3.8. Theorem 2.3.2 ensures that the algorithm
reaches a complete allocation with probability one, if a complete allocation is indeed
possible. Corollary 2.3.8 studies the asymptotic behavior of the algorithm and
explicitly exhibits the invariant probability distribution. Consequence of Corollary
2.3.8 is that in the double limit when time goes to infinity and the noise parameter
goes to 0, the algorithm converges to a Nash equilibrium that is, in particular, a
global maximum of the potential function. This guarantees that the solution will
indeed be close to the global welfare of the community. At the best of our knowledge,
this analysis is new in game theory.

The remaining part of this chapter is structured as follow. In Section 2.1 we
formally define the network allocation problem and prove a necessary and sufficient
condition for the allocation problem to be solvable (the proof first appear in [4]). We
then introduce a family of functionals and define the optimal allocation problem.
Section 2.2 is devoted to cast the problem to a potential game theoretic framework
[8, 7] and to propose a distributed algorithm that is an instance of a noisy best
response dynamics. The main technical part of the chapter is Section 2.3 where the
fundamental results Theorem 2.3.2 and Corollary 2.3.8 are stated and proven. We do
not include simulations in this chapter, but we present some examples. Simulations
will be presented in Chapter 6.

2.1 The cooperative storage model

Consider a set X of units that play the double role of users who have to allocate
externally a back up of their data, as well resources where data from other units can
be allocated. Generically, an element of X will be called a unit, while the terms
user and resource will be used when the unit is considered in the two possible roles
of, respectively, a source or a recipient of data. We assume units to be connected
through a directed graph G = (X ,E) where a link (x,y) ∈ E means that unit x is
allowed to store data in unit y. We denote by

Nx := {y ∈ X |(x,y) ∈ E}, N−
y := {x ∈ X |(x,y) ∈ E}
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respectively, the out- and the in-neighborhood of a node. Note the important different
interpretation in our context: Nx represents the set of resources available to unit
x while N−

y is the set of units having access to resource y. If D ⊆ X , we put
N(D) = ∪x∈DNx and N−(D) = ∪x∈DN−

x .

We assume the data possessed by the units to be quantized atoms of the same
size. Each unit x is characterized by two non negative integers:

• αx is the number of data atoms that unit x needs to back up into his neighbors,

• βx is the number of data atoms that unit x can accept and store from his
neighbors.

The numbers {αx} and {βx} will be assembled into two vectors denoted, respectively,
α and β . Given the triple (G,α,β ), we define a partial state allocation as any matrix
W ∈ NX×X that satisfies the following conditions

(P1) Wxy ≥ 0 for all x,y and Wxy = 0 if (x,y) ̸∈ E .

(P2) W x := ∑
y∈X

Wxy ≤ αx for all x ∈ X .

(P3) Wy := ∑
x∈X

Wxy ≤ βy for all y ∈ X .

We interpret Wxy as the number of pieces of data that x has allocated in y under W .
Property (P1) enforces the graph constraint: x can allocate in y iff (x,y)∈ E . Property
(P2) says that a unit can not allocate more data than the one it owns, and, finally,
(P3) describes the storage constraint at the level of units considered as resources.
Whenever W satisfies (P2) with equality for all x ∈X , we say that W is an allocation
state. The set of partial allocation states and the set of allocation states are denoted,
respectively, with the symbols Wp and W . We will say that the allocation problem
is solvable if a state allocation W ∈W exists.

2.1.1 The allocation problem as a matching problem

We define
Ax = {(x,a) |a ∈ {1, . . . ,αx}}, A=

⋃
x∈X

Ax
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By = {(y,b) |b ∈ {1, . . . ,βy}}, B =
⋃

y∈X
By

A and B represent, respectively, the sets of all the atoms to be allocated and the set
of atoms of available space.

Given the triple (G,α,β ), we define an allocation as any map Q : A → X
(Q(x,a) = y means that x has allocated the data atom a into resource y) satisfying
the properties expressed below.

(C1) Graph constraint Q(x,a) ∈ Nx for all x ∈ X and a ∈ {1, . . . ,αx};

(C2) Storage limitation For every y ∈ X , it holds, |Q−1(y)| ≤ βy.

We will say that the allocation problem is solvable if an allocation Q exists. We
denote by Q the set of allocations. We will also need to consider partial allocations,
namely functions Q : D →X where D ⊆A and satisfying, where defined, conditions
(C1) and (C2). We denote by Qp the set of partial allocations.

It is clear that, given a partial allocation Q, the matrix W (Q) ∈ NX×X where
W (Q)xy is the number of atomic data that x has allocated in y under Q, namely,

W (Q)xy := |Q−1(y)∩Ax| (2.1)

is an allocation state. It is immediate to see that, conversely, if there exists W
satisfying the properties (P1)-(P3), then, from it, we can construct an allocation Q
such that W =W (Q). Clearly, under this correspondence, we have that Q ∈ Q iff
W satisfies (P2) with equality for all x ∈ X . It is clear that two allocations Q1 and
Q2 such that W (Q1) =W (Q2), only differ for a permutation of the data atoms of the
various units and for many porpouses can be considered as equivalent.

Consider now the bipartite graph P = (A×B,EP) where ((x,a),(y,b)) ∈ EP iff
(x,y) ∈ E . An allocation naturally induces a matching on P which is complete on A.
To this aim, notice that, from Q ∈Q and using condition (C2), we can construct an
injective mapping Q̃ : A→ B such that Q̃(x,a) = (Q(x,a),b) for every x ∈ X and
for all a.

We then define

M :=
⋃

x∈X
{((x,a),(y,b)) ∈ A×B|(y,b) = Q̃(x,a)}
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It is clear that this procedure can be inverted and that from any matching of M
complete on A we can associate an allocation for (G,α,β ). This equivalence allows
to use classical results like the Hall’s marriage theorem to characterize the existence
of allocations. Precisely we have the following result

Theorem 2.1.1. Given (G,α,β ), there exists an allocation iff the following condition
is satisfied:

∑
x∈D

αx ≤ ∑
y∈N(D)

βy ∀D ⊆X (2.2)

Proof. By Hall’s theorem, the existence of a matching in P complete on A is equiva-
lent to the condition

|A| ≤ |NP(A)| ∀A ⊆A (2.3)

where NP(A) ⊆ B is the out-neighborhood of A in P . Given A ⊆ A let Ā be the
union of those Ax’s for which Ax ∩A ̸= /0. By the way the bipartite graph P has
been defined and by the fact that any atom (x,a) ∈ A is connected in P to all the
atoms (y,b) ∈ B such that y ∈ Nx, it follows that NP(A) = NP(Ā). Therefore it is
sufficient to restrict condition (2.3) to subsets A such that Ax ∩A ̸= /0 yield Ax ⊆ A.
Given such an A, if we consider D = {x | Ax ⊆ A}, we immediately obtain that (2.2)
coincides with (2.3).

From the practical point of view, the equivalence of our problem with a classical
matching problem, is, however, of little utility, as the number of nodes of P is of the
size ∑αx +∑βy which will in general be very large.

In general, it is not necessary to check the validity of (2.2) for every subset D. We
say that D ⊆ X is maximal if for any D′ ⊋ D, it holds N(D′)⊋ N(D). We say that
D1,D2 ⊆X are independent if N(D1)∩N(D2) = /0 and D ⊆X is called irreducible
if it can not be decomposed into the union of two non empty independent subsets.
Clearly, it is sufficient to verify (2.2) for the subclass of maximal irreducible subsets.

Example 2.1.2. If G is complete, we have that N({x}) = X \{x} while N(D) = X
for all D such that |D| ≥ 2. Hence, the only maximal irreducible subsets are the
singletons {x} and the set X . Condition (2.2) in this case reduces to

αx ≤ ∑
y̸=x

βy, ∀x ∈ X ∑
x∈X

αx ≤ ∑
y∈X

βy (2.4)
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In general, the class of maximal irreducible subsets can be large and grow more
than linearly in the size of X , as the following example shows.

Example 2.1.3. If G = (X ,E) is a line graph (X = {1,2, . . . ,n} and E = {(i, i+
1), i = 1, . . . ,n−1}) it can be checked that the maximal irreducible subsets are those
of the form {i, i+2, . . . , i+2s}.

We now focus on the special but intersting case when all units have the same
amount of data to be stored and the same space available, namely, αx = a, βx = b
for every x ∈ X . In this case, condition (2.4) that characterizes the existence of
allocations for the complete graph, simply reduces to a ≤ b. In this case, among the
possible allocation states there are those where each unit uses only one resource:
given any permutation σ : X →X without fixed points, we can consider

W σ
xy =

{
a ifσ(x) = y
0 otherwise

(2.5)

In general, an allocation state as W σ in (2.5) of the example above where each
unit uses just one resource and each resource is only used by one unit, is called a
matching allocation state. Existence of matching allocation states is guaranteed for
more general graphs than the complete ones.

Proposition 2.1.4. Let G = (X ,E) be any graph and assume that αx = a, βx = b for
every x ∈ X . The following conditions are equivalent:

(i) There exists an allocation state W;

(ii) There exists a matching allocation state;

(iii) a ≤ b and |D| ≤ |N(D)| for every subset D ⊆X .

Proof. (ii) ⇒ (i) is trivial. Notice that (iii) is, in this case, equivalent to condition
(2.2). Therefore (i) ⇒ (iii) follows from Theorem 2.1.1. What remains to be shown
is that (iii) ⇒ (ii). To this aim, notice that when (iii) is verified and we consider
the bipartite graph G̃ = (X ×X , Ẽ) where (x,y) ∈ Ẽ iff (x,y) ∈ E, Hall’s theorem
guarantees the existence of a matching in G̃ complete on the first set, namely a
permutation σ : X →X such that (x,σ(x)) ∈ Ẽ for every x ∈ X . The corresponding
state allocation W σ defined as in (2.5) is a matching allocation state.
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We can now extend the result contained in Example 2.1.2.

Corollary 2.1.5. Suppose that G = (X ,E) is any undirected regular graph and that
αx = a, βx = b for every x ∈X with a ≤ b. Then, there exists a (matching) allocation
state.

Proof. Let s be the degree of each node in the graph. Fix any subset D ⊆ X . If
ED is the set of directed edges starting from a node in D, we have that s|D| =
|ED| ≥ s|N(D)|. This implies that that |D| ≤ |N(D)|. We conclude using Proposition
2.1.4.

Not necessarily a matching allocation state is the desirable one. In certain
applications, security issues may rather require to fragment the data of each unit
as much as possible. Suppose we are under the same assumptions than in previous
result, namely G = (X ,E) is an undirected regular graph with degree s, αx = a,
βx = b for every x ∈ X with a ≤ b. If moreover s divides a we can also consider the
’diffused’ allocation state given by

Wxy =
a
s

Axy (2.6)

where A is the adjacency matrix of G. Notice that all these matrices W can also
be interpreted as valid allocation states for the case when the underlying graph is
complete.

For graphs that are not regular, simple characterizations of the existence of
allocations in general do not exist. However, sufficient conditions can be obtained as
the result below shows and whose proof follows along the same line than the proof
of Corollary 2.1.5.

Proposition 2.1.6. Let G be any graph with minimal out-degree dmin and maximum
in-degree d−

max. Let a = maxx αx, b = minx βx and assume that a ≤ bdmin/d−
max. Then,

there exists an allocation state.

The above result can not be improved: indeed in a star graph with αx = a, βx = b
for every x ∈X , it is immediate to see that the condition a ≤ bdmin/d−

max is necessary
for an allocation to exist.
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2.1.2 The optimal allocation problem

On the set of allocation states, we define a reward functional measuring qualitative
and realistic features that we desire the solution to possess, i.e., congestion and
aggragation. Functionals considered in this paper have a separable structure that is a
standard assumption in allocation problems [6].

We start with a notation. Given a (partial) allocation state W ∈Wp, we denote
with the symbols (Wx·) and (W·y), respectively, the row vector of W with label x, and
the column vector of W with label y. We consider functionals Ψ : Wp → R of the
type:

Ψ(W ) = ∑
x∈X

fx(Wx·)+ ∑
y∈X

gy(W·y) (2.7)

consisting of two parts: one that takes into account the way each unit is succeeding
in allocating its data and another that is typical a congestion term and considers
the amount of data present in the various resources. Our goal is to maximize the
functional Ψ over the set of allocation states W . The reason for defining Ψ in the
larger set of partial allocation states Wp will be clearer later when we present the
game theoretic set up and the algorithm.

Examples and simulations in this thesis will focus on the following cases:

fx(Wx·) = Call
∑yWxy +Cagg

∑y∈X W 2
xy,

gy(Wy) = −Ccon
y (Wy)

2
(2.8)

We now explain the meaning of the various terms:

• the term Call
∑x ∑yWxy where Call > 0 is sufficiently large, has the effect of

pushing the optimum to be an allocation state (a configuration where all units
have stored their entire set of data);

• the term Cagg
∑x ∑y∈X W 2

xy has different significance depending on the sign of
Cagg. If Cagg > 0 plays the role of an aggregation term, it pushes units not to
use many different resources for their allocation. If instead Cagg < 0, the term
has the opposite effect as it pushes towards fragmentation of the data.

• the term −∑yCcon
y (Wy)

2 is a classical congestion term: the constants −Ccon
y <

0 for all y measure the reliability of the various resources and pushes the use
of more reliable resources
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An alternative choice for the resource congestion term is the following. Put |W·y|H =

|{x ∈ X ,Wxy > 0}| the number of units that are using resource y and consider

gy(W·y) =−Ccon
y |W·y|H (2.9)

This might be useful in contexts where it is necessary the control the number of units
accessing the same resource, to avoid communication burden.

The functionals (2.8) and (2.9) reflects the features that we wanted to enforce:
congestion and aggregation. The reason for the latter feature comes from the fact
that an exceeding fragmentation of the stored data will cause a blow up in the
number of communications among the units, both in the storage and recovery phases.
This feature should be considered against another feature, the diversification of
back ups, which is going to be addressed in Chapter 5. In real applications, units
will need to store multiple copies of their data in order to cope with security and
failure phenomena. In that case, these multiple copies will need to be stored in
different units. On the other hand, the congestion term is represented by a classical
cost function that each user possibly experiences, for instance, as a delay in the
storage/recovery actions.
The above desired features may be contradictory in general and we want to have
tunable parameters to make the algorithm converge towards a desired compromised
solution. The choice of this functionals has been made on the basis of simple realistic
considerations and on the fact that, as exploited below, this leads to a potential game.
In principle, different terms in the utility function can be introduced in order to make
units to take into considerations other desired features (e.g multiple back up).

While our theory and algorithms will be formulated for a generic Ψ as defined in
(2.7), the example proposed and the numerical simulations will be restricted to the
specific cases we have described.

Below we present a couple of examples of explicit computation of the maxima
of Ψ. We assume Ψ to be of the form described in (2.7) and (2.8) with Ccon

y =Ccon

for every y ∈ X . We also assume that αx = a, βx = b for every x ∈ X with a ≤ b.

Example 2.1.7. Suppose that G = (X ,E) is any undirected regular graph and
assume that αx = a, βx = b for every x ∈ X with a ≤ b. Take Ψ to be of the form
described in (2.7) and (2.8) with Ccon

y = Ccon > 0 for every y ∈ X . There are two
cases:
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• Cagg > 0. In this case, the maxima of Ψ coincide with the matching allocation
states. Indeed notice that any matching allocation state W (whose existence
is guaranteed by Proposition 2.1.4) separately maximizes, for each y, the
two expressions ∑y∈X Wxy and ∑y∈X W 2

xy. Moreover, considering that Wy = a
for every resource y, simultaneously, minimize the congestion expression

∑y∈X (Wy)
2. The fact that these are the only possible maxima is evident from

these considerations.

• Cagg < 0. If the degree s of G divides a, arguing like above, we see that the
unique maximum is given by the diffused allocation state (2.6). When s does
not divide a, such a simple solution does not exist. In this case, maxima can be
characterized as follows. Put a = sk+ r = (s− r)k+ r(k+1) (with r < s) and
consider a regular subgraph G̃ of degree r. An optimal allocation is obtained
by letting units allocate k+1 atoms of their data in each of their neighbors in
G̃ and k atoms of their data in each of the remaining neighbors.

2.2 The game theoretic set-up and the algorithm

In this section we recast the optimization problem into a game theoretic context and
we then use learning dynamics to derive decentralized algorithms adapted to the
given graph topology that solve the allocation problem and maximize the functional
Ψ.

Assume that a functional Ψ as in (2.7) has been fixed. We associate a game to Ψ

according to the ideas developed in [6, 2].

The set of actions Ax of a unit x is given by all possible row vectors (Wx·) such
that ∑xWxy ≤ αx. In this way the product set of actions ∏xAx can be made to
coincide with the space of non-negative matrices W ∈ RX×X such that ∑xWxy ≤ αx

for every x ∈ X . Such a W in general is not a partial allocation. Indeed, such a W
will automatically only possess properties (P1) and (P2). We have that W ∈Wp if
the extra conditions (P3), ∑yWxy ≤ βy for every y ∈ X , is satisfied. This is a key non
classical feature of the game associated to our model: the storage limitations make
the available actions of a unit depend on the choice made be the other ones.
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Now, for each unit x, we define its utility function Ux : Wp → R as

Ux(W ) = fx(Wx·)+ ∑
y∈N−

x

gy(W·y) . (2.10)

Note that, in order to compute Ux(W ), unit x needs to know, besides the state of its
own data allocation {Wx·}, the congestion state gy(W·y) of the neighboring resources.
Different utility functions, with different levels of informations required, can be
found in [2].

We now recall some basic facts of game theory. A Nash equilibrium is any
allocation state W ∈Wp such that, for every x̄ ∈ X and for every W ′ ∈Wp such that
Wxy =W ′

xy for every x ̸= x̄ and for every y, it holds

Ux̄(W )≥Ux̄(W ′) (2.11)

If W,W ′ ∈Wp are two allocation states such that Wxy =W ′
xy for every x ̸= x̄ and for

every y, it is straightforward to see that the following equality holds

Ux̄(W ′)−Ux̄(W ) = fx̄(W ′
x̄·)+ ∑

y∈N−
x̄

gy(W ′
·y)−

 fx̄(Wx̄·)+ ∑
y∈N−

x̄

gy(W·y)


= fx̄(W ′

x̄·)− fx̄(Wx̄·)+ ∑
y∈N−

x̄

gy(W ′
·y)−gy(W·y)

= ∑
x∈X

fx(W ′
x·)− fx(Wx·)+ ∑

y∈X
gy(W ′

·y)−gy(W·y)

= ∑
x∈X

fx(W ′
x·)+ ∑

y∈X
gy(W ′

·y)−
(

∑
x∈X

fx(Wx·)+ ∑
y∈X

gy(W·y)

)
= Ψ(W ′)−Ψ(W )

(2.12)
This says, in the language of game theory [7], that the game is potential with potential
function given by Ψ itself. A simple classical result says that maxima of the potential
are Nash equilibria for the game. In general the game will possess extra Nash
equilibria.

The choice (2.10) is not the only one to lead to a potential game with potential Ψ.
Other possibilities can be constructed following [6].
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As far as our theory is concerned, the specific form of the utility functions is
not important as far as it leads to a potential game with potential Ψ. On the utility
functions, (2.10) or its possible alternatives, we impose a monotonicity condition that
essentially says that no unit will ever have a vantage to remove data already allocated.
Precisely, we assume that for every W,W ′ ∈ Wp, x̄ ∈ X such that Wxy = W ′

xy for
every x ̸= x̄ and for every y, the following holds

W ′x̄ <W x̄ ⇒ Ux̄(W ′)<Ux̄(W ) (2.13)

This condition is not strictly necessary for our results (as our algorithm actually
will not allow units to remove data), it is however a meaningful assumption and
simulations show that helps to speed up the algorithm.

We now focus on the case when Ψ is of the form given by (2.8) with Ccon
y =Ccon

for every y ∈ X . In this case, a simple check shows that the monotonicity condition
(2.13) is guaranteed if we impose the condition

Call > 2(||α||∞|Cagg|+ ||β ||∞Ccon) (2.14)

where ||v||∞ = maxvi is the infinity norm of a vector.

We conclude this section, computing the Nash equilibria in a couple of simple
examples and discussing the relation with the maxima of Ψ.

Example 2.2.1. Suppose that G is the complete graph with three units and that
αx = a = 2 and βx = b ≥ 2 for x = 1,2,3. Consider Ψ to be of the form (2.8) with
Ccon

y =Ccon for every y ∈ X and that condition (2.14) holds. Consider the following
allocation states

W 1 =

0 2 0
0 0 2
2 0 0

 ,W 2 =

0 0 2
2 0 0
0 2 0

 ,W 3 =

0 1 1
1 0 1
1 1 0


We know from the considerations in Example 2.1.7 that in the case when Cagg > 0,
the matching allocation states W 1 and W 2 are the (only) two maxima of Ψ and thus
Nash equilibria. Instead, if Cagg < 0, the diffused allocation state W 3 is the only
maximum of Ψ and is in this case a Nash equilibrium.
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Notice now that if b < 3, the only three possible allocation states are W i for
i = 1,2,3. Since any two of these matrices differ in more than one row and condition
(2.14) yields (2.13), we deduce that all three of them are in this case Nash equilibria,
independently on the sign of Cagg.

Suppose now that b ≥ 3. Explicit simple computations show that, if Cagg ≤Ccon,
W 3 is a Nash equilibrium and if Cagg ≥−6Ccon, W 1 and W 2 are Nash equilibria. In
summary, if b < 3 or if b ≥ 3 and −6Ccon ≤Cagg ≤Ccon, the three matrices W i for
i = 1,2,3 are Nash equilibria.

The next example shows that also partial allocations may be Nash equilibria.

Example 2.2.2. G 5-cycle, αx = a = 4 and β1 = 7, β2 = 2, β3 = 4, and β4 = β5 = 6.
It can be checked that the two matrices below are both Nash equilibria:

W =


0 0 0 0 4
3 0 1 0 0
0 0 0 4 0
0 0 3 0 1
4 0 0 0 0

 , W =


0 0 0 0 4
3 0 0 0 0
0 0 0 4 0
0 0 4 0 0
4 0 0 0 0


The one of the right is a maximum of Ψ, the one on the left is instead a partial
allocation.

2.2.1 The algorithm

The allocation algorithm we are proposing is fully distributed and asynchronous and
is only based on communications between units, taking place along the links of the
graph G = (X ,E). It is based on the ideas of learning dynamics where, randomly,
units activate and modify their action (allocation state) in order to increase their
utility. The most popular of these dynamics is the so-called best response where units
at every step choose the action maximizing their utility. This dynamics is proven to
converge almost surely, in finite time, to a Nash equilibrium. In presence of Nash
equilibria that are not maxima of the potential (as it is in our case) best response
dynamics is not guaranteed to converge to a maximum. This is simply because Nash
Equilibria are always equilibrium points for the dynamics.
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A popular variation of the best response is the so-called noisy best response (also
known as log-linear learning) where maximization of utility is relaxed to a random
choice dictated by a Gibbs probability distribution [3].

We now illustrate the details of our algorithm. For the sake of proposing a
realistic model we assume that units may temporarily be shut down or in any case
disconnected from the network. We model this assuming that, at every instant of
time, a unit is either in functional state on or off: units in functional state off are not
available for communication and for any action including storage and data retrieval.
A unit, which is currently in state on, can activate and either newly allocate or move
some data among the available resources (e.g. those neighbors that still have place
available and that are on at that time).

The functional state of the network at a certain time will be denoted by ξ ∈
{0,1}X : ξx = 1 means that the unit x is on. The times when units modify their
functional state (off to on or on to off) and the times when units in functional state
on activate are modeled as a family of independent Poisson clocks whose rates will
be denoted (for unit x), respectively, νon

x , ν
o f f
x , and νact

x . The functional state of the
network as a function of time ξ (t) is thus a continuous time Markov process whose
components are independent Bernoulli processes.

We now describe the core of the algorithm, namely the rules under which acti-
vated units can modify their allocation state.

We start with some notation. Given a (possibly partial) allocation state W ∈Wp,
a functional state ξ ∈ {0,1}X , and a unit x̄ ∈ X such that ξx̄ = 1, define:

Wx̄(W,ξ ) =

{
W ′ ∈Wp :

W ′
xy =Wxy if x ̸= x̄ or ξy = 0

W ′x̄ ≥W x̄, W ′ ̸=W

}
. (2.15)

Wx̄(W,ξ ) describes the possible partial allocation states obtainable from W by
modifications done by the unit x̄: only the terms Wx̄y where y is on can be modified
and the total amount of allocated data W x̄ can only increase or remain equal. Since
the sets Wx̄(W,ξ ) can in general be very large, it is convenient to consider the
possibility that the algorithm might use a smaller set of actions where units either
allocate new data or simply move data from one resource to another one.
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Given (W,ξ ) ∈Wp ×{0,1}X and a unit x̄, define

Nx̄(W,ξ ) := {y ∈ Nx̄ |Wx̄y < βy, ξy = 1} (2.16)

the set of available neighbor resources for x̄ under the allocation state W and the
functional state ξ : those that are on and still have space available.

A family of sets Mx̄(W,ξ ) ⊆ Wx̄(W,ξ ), defined for each x̄ ∈ X and each
(W,ξ ) ∈Wp ×{0,1}X , is called admissible if

(i) W x̄ < αx̄, y ∈ Nx̄(W,ξ ),⇒∃n : W ′ =W +nex̄y ∈Mx̄(W,ξ );

(ii) Wx̄y′ > 0, ξy′ = 1, y′′ ∈ Nx̄(W,ξ )⇒W ′ =W +(ex̄y′′ − ex̄y′) ∈Mx̄(W,ξ );

(iii) W ′ ∈Mx̄(W,ξ ) iff W ∈Mx̄(W ′,ξ ) for every W ∈W .

Conditions (i) and (ii) essentially asserts that when a unit has an available
neighbor resource not yet saturated, then Mx̄(W,ξ ) must incorporate the possibility
to newly allocate or transfer already allocated data into it. Condition (iii) instead
simply says that when the functional state does not change and we are in an allocation
state, any transformation can be reversed.

Examples of admissible families Mx̄(W,ξ ) are the following

1. Mx̄(W,ξ ) =Wx̄(W,ξ )

2. Mx̄(W,ξ ) = {W ′ ∈Wx̄(W,ξ ) : ∃y,∃n W ′ = W + nex̄y)}∪{W ′ ∈Wx̄(W,ξ ) :
∃y′,y′′,∃n W ′ =W +n(ex̄y′′ − ex̄y′)}

3. Mx̄(W,ξ )= {W ′ ∈Wx̄(W,ξ ) :∃y,∃n∈QW ′=W +nex̄y)}∪{W ′ ∈Wx̄(W,ξ ) :
∃y′,y′′,∃n ∈ Q W ′ =W +n(ex̄y′′ − ex̄y′)} where Q ⊆ N and 1 ∈ Q.

In the second case, modifications allowed are those where a unit either allocate
a certain amount of new data into a single resource or it moves data from one
resource to another one. The third case puts an extra constraint on the amount of
data allocated or moved: the simplest case is Q = {1}, just an atomic piece of data
is newly allocated or moved. Simulation presented in this thesis all fit in this third
case with various possible sets Q.
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Given an admissible family Mx̄(W,ξ ), we now define a Gibbs measure on it as
follows. Given a parameter γ > 0, put

Z(W,ξ )
x̄ (γ) = ∑W̃∈Mx̄(W,ξ ) eγUx̄(W̃ )

Z(W,W ′,ξ )
x̄ (γ) = max

{
Z(W,ξ )

x̄ (γ),Z(W ′,ξ )
x̄ (γ)

} (2.17)

Now define, for W ′ ∈Mx̄(W,ξ ),

P(W,ξ )
x̄ (W ′) =


eγUx̄(W

′)

Z(W,ξ )
x̄ (γ)

, if ||W ||< ||W ′||
eγUx̄(W

′)

Z(W,W ′,ξ )
x̄ (γ)

, if ||W ||= ||W ′||
(2.18)

where ||W ||= ∑xyWxy, and complete it to a probability by putting

P(W,ξ )
x̄ (W ) = 1− ∑

W ′∈Mx̄(W,ξ )

P(W,ξ )
x̄ (W ′)

The algorithm is completely determined by the choice of the admissible family
Mx̄(W,ξ ) and of the probabilities (2.18). If unit x̄ activates at time t, the systems is
in partial allocation state W (t), and in functional state ξ (t), it will jump to the new
partial allocation state W ′ with probabilities given by

P(W (t+) =W ′) = P(W (t),ξ (t))
x̄ (W ′), W ′ ∈Mx̄(W (t),ξ (t)) (2.19)

If unit x̄ chooses a W ′ such that ||W ′|| > ||W || we say that it makes an allocation
move, otherwise, if ||W ′||= ||W ||, we talk of a distribution move.

2.3 Analysis of the algorithm

In this section we analyze the behavior of the algorithm introduced above. We will
essentially show two results:

1. first, we prove that if the set of state allocation W is not empty (i.e. condition
(2.2) is satisfied), the algorithm above will reach such an allocation in bounded
time with probability 1 (e.g W (t) ∈W for t sufficiently large);
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2. second, we show that, under a slightly stronger assumption than (2.2), in the
double limit t → +∞ and then γ → +∞, the process W (t) induced by the
algorithm will always converge, in law, to a Nash equilibrium that is a global
maximum of the potential function Ψ.

In order to prove such results, it will be necessary to go through a number of
intermediate technical steps. Other possible techniques can be found in [1, 9, 5].

In the sequel we assume we have fixed a triple (G,α,β ) satisfying the existence
condition (2.2), an admissible family of sets Mx̄(W,ξ ) and we consider the allocation
process W (t) described by (2.19) with any possible initial condition W (0).

By the way it has been defined, the process W (t) is Markovian conditioned to
the functional state process ξ (t). If we consider the augmented process (W (t),ξ (t)),
this is Markovian and its only non zero transition rates are described below:

Λ(W,ξ ),(W,ξ ′) =

{
νon

x̄ ifξx̄ = 0, ξ ′
x̄ = 1, ξx = ξ ′

x∀x ̸= x̄

ν
o f f
x̄ ifξx̄ = 1, ξ ′

x̄ = 0, ξx = ξ ′
x∀x ̸= x̄

Λ(W,ξ ),(W ′,ξ ) = νact
x̄ P(W,ξ )

x̄ (W ′) ifξx̄ = 1,W ′ ∈ Nx̄(W,ξ )

(2.20)

We now introduce a graph on Wp that will be denoted by Lp: an edge (W,W ′)
is present in Lp if and only if W ′ ∈Mx̄(W,1). Notice that, if νact

x̄ > 0 for every x̄,
this can be equivalently described as Λ(W,1),(W ′,1) > 0. The graph Lp thus describes
the possible jumps of the process W (t) conditioned to the fact that all resources are
in functional state on. We want to stress the fact that the graph Lp depends on the
triple (G,α,β ) as well on the choice of the admissible family Mx̄(W,1) but not on
the particular choice of the functional Ψ or of the utility functions Ux̄.

Our strategy, in order to prove our first claim, will be to show that from any
element W ∈Wp there is a path in Lp to some element W ′ ∈W .

Given W ∈Wp we define the following subsets of units

X f (W ) := {x ∈ X |W x = αx},

X sat(W ) := {x ∈ X \X f (W ) | ̸ ∃y ∈ Nx s.t Wy < βy}

Units in X f (W ) are called fully allocated: these units have completed the allocation
of their data under the state W . Units in X sat(W ) are called saturated: they have
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not yet completed their allocation, however, under the current state W , they can not
make any action, neither allocate, nor distribute.

Finally, define

Wsat
p := {W ∈Wp \W | X = X f (W )∪X sat(W )}

It is clear that from any W ∈ Wp \Wsat
p , there exists units that can make either

an allocation or a distribution move. Instead, if we are in a state W ∈Wsat
p , there

are units that are not fully allocated and all these units con not make any move.
The only units that can possibly make a move are the fully allocated ones. Notice
that, because of condition (2.2), for sure there exist resources y such that Wy < βy

and these resources are indeed exclusively connected to fully allocated units. The
key point is to show that in a finite number of distribution moves, performed by
fully allocated units, it is always possible to move some data atoms from resources
connected to saturated units to resources with available space: this will then make
possible a further allocation move.

For any fixed W ∈ Wp, we can consider the following graph structure on X
thought as set of resources: HW = (X ,EW ). Given y1,y2 ∈ X , there is an edge from
y1 to y2 if and only if there exists x ∈ X for which

Wxy1 > 0, (x,y2) ∈ E

The edge from y1 to y2 will be indicated with the symbol y1 →x y2 (to also recall the
unit x involved). The presence of the edge means that the two resources y1 and y2

are in the neighborhood of a common unit x that is using y1 under W . This indicates
that x can in principle move some of its data currently stored in y1 into resource y2 if
this last one is available. We have the following technical result

Lemma 2.3.1. Suppose (G,α,β ) satisfies (2.2). Fix W ∈Wp and let ȳ ∈ X be such
that there exists x̄ ∈ Nȳ with W x̄ < αx̄. Then, there exists a sequence

ȳ = y0, x0, y1, . . . ,yt−1, xt−1, yt (2.21)

satisfying the following conditions

(Sa) Both families of the yk’s and of the xk’s are each made of distinct elements;
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(Sb) yk →xk yk+1 for every k = 0, . . . , t −1;

(Sc) Wyk = βyk for every k = 0, . . . , t −1, and Wyt < βyt .

Proof. Let Y ⊆ X be the subset of nodes that can be reached from ȳ in HW . Prelim-
inarily, we prove that there exists y′ ∈ Y such that Wy′ < βy′ . Let

Z := {x ∈ X | ∃y ∈ Y,Wxy > 0}

and notice that, by the way Y and Z have been defined,

x ∈ Z, (x,y) ∈ E ⇒ y ∈ Y (2.22)

Suppose now that, contrarily to the thesis, Wy ≥ βy for all y ∈ Y . Then,

∑
x∈Z

αx ≤ ∑
y∈Y

βy

= ∑
y∈Y

Wy

= ∑
y∈Y

∑
x∈Z

Wxy

= ∑
x∈Z

W x

< ∑
x∈Z

αx

(2.23)

where the first inequality follows from (2.22) and (2.2), the first equality from
the contradiction hypothesis, the second equality from the definition of Z , the third
equality again from (2.22) and, finally, last inequality from the existence of x̄. This
is absurd and thus proves our claim.

Consider now a path of minimal length from ȳ to Y in HW :

ȳ = y0 →x0 y1 →x1 · · · →xt−2 yt−1 →xt−1 yt

and notice that the sequence ȳ= y0, x0, y1, . . . ,yt−1, xt−1, yt will automatically satisfy
properties (Sa) to (Sc).
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We are now ready to prove the first main result.

Theorem 2.3.2. Assume that the following conditions hold

1. (G,α,β ) satisfies (2.2).

2. Mx̄(W,ξ ) is an admissible family.

Then, for every W ∈Wp there is a path in Lp to some element W ′ ∈W .

Proof. We will prove the claim by a double induction process. To this aim we
consider two indices associated to any W ∈Wp \W . The first one is defined by

mW = ∑
x∈X

(αx −W x)≥ 1

To define the second index, consider any x̄ ∈ X \X f (W ). We can apply Lemma
2.3.1 to W and any ȳ ∈ Nx̄ and obtain that we can find a sequence of agents
ȳ = y0, x0, y1, . . . , yt−1, xt−1, yt satisfying the properties (Sa), (Sb), and (Sc) above.
Among all the possible choices of x̄ ∈ X , ȳ ∈ Nx̄ and of the corresponding sequence,
assume we have chosen the one minimizing t and denote such minimal t by tW . The
induction process will be performed with respect to the lexicographic order induced
by the pair (mW , tW ).

In the case when tW = 0, it means we can find x̄ ∈ X and ȳ ∈ Nx̄ such that
Wȳ < βȳ. This yields ȳ ∈ Nx̄(W,1). Hence, by property (i) in the definition of an
admissible family, it follows that there exists n such that W ′ =W +nex̄ȳ ∈Mx̄(W,1).
Notice that mW ′ < mW . In case mW = 1, this means that W ′ ∈W .

Consider now any W ∈Wp \W such that t = tW > 1. Let x̄ ∈ X , ȳ ∈ Nx̄ and the
sequence ȳ= y0, x0, y1, . . . , yt−1, xt−1, yt satisfying the properties (Sa), (Sb), and (Sc)
above. Since Wxt−1yt−1 > 0 and yt ∈ Nxt−1(W,1), it follows from property (ii) in the
definition of admissible families that W ′ =W − (ext−1yt−1 − ext−1yt ) ∈Mxt−1(W,1).
Since W ′

yt−1
< βyt−1 , for sure tW ′ < tW . The induction argument is thus complete.

Corollary 2.3.3. Consider the process W (t) as defined in (2.19) and assume that
the following conditions hold

1. (G,α,β ) satisfies (2.2).
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2. νon
x > 0 and νact

x > 0 for every x ∈ X ,

3. Mx̄(W,ξ ) is an admissible family.

Then,
P(∃t0 |W (t) ∈W∀t ≥ t0) = 1

Proof. It follows from the form of the transition rates (2.20) and assumption 2), that
the process (W (t),ξ (t)), starting from any initial condition (W,ξ ), will reach (W,1)

in bounded time with positive probability. Combining with Theorem 2.3.2 and using
again 2), it then follows that (W (t),ξ (t)) reaches a couple (W ′,1) for some W ′ ∈W
in bounded time with positive probability. Since, by definition of an admissible
family, the set {(W ′,ξ ),W ′ ∈W} is invariant by the process (W (t),ξ (t)), standard
results on Markov processes yield the thesis.

We are now left with studying the process W (t) on W . Noisy best response
dynamics are known to yield reversible Markov processes. This is indeed the case
also in our case once the process has reached the set of allocations W . Precisely, the
following result holds:

Proposition 2.3.4. Suppose that νon
x ,ν

o f f
x > 0 for all x ∈ X . Then, (W (t),ξ (t)),

restricted to W×{0,1}X , is a time-reversible Markov process. More precisely, for
every (W,ξ ),(W ′,ξ ′) ∈W×{0,1}X it holds

ρ(W,ξ )Λ(W,ξ ),(W ′,ξ ′) = ρ(W ′,ξ ′)Λ(W ′,ξ ′),(W,ξ ) (2.24)

where

ρ(W,ξ ) =

[
∏

x:ξx=1
ν

on
x ∏

x:ξx=0
ν

off
x

]
eγΨ(W ) (2.25)

Proof. It follows from relations (2.20) and the definition of admissible families, that
the only cases when Λ(W,ξ ),(W ′,ξ ′) and Λ(W ′,ξ ′),(W,ξ ) are not both equal to zero are
the following:

(i) W ′ =W , ξx̄ = 0, ξ ′
x̄ = 1, ξx = ξ ′

x∀x ̸= x̄

(ii) W ′ =W , ξx̄ = 1, ξ ′
x̄ = 0, ξx = ξ ′

x∀x ̸= x̄

(iii) ξ ′ = ξ , W ′ ∈ Nx̄(W,ξ ).
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In case (i), we have that

ρ(W,ξ )

ρ(W,ξ ′)
=

∏
x:ξx=1

νon
x ∏

x:ξx=0
νoff

x

∏
x:ξ ′

x=1
νon

x ∏
x:ξ ′

x=0
νoff

x
=

νoff
x̄

νon
x̄

=
Λ(W,ξ ′),(W,ξ )

Λ(W,ξ ),(W,ξ ′)

Case (ii) can be analogously verified. Consider now case (iii). Using relations (2.12),
(2.20), and (2.18), we obtain

ρ(W,ξ )

ρ(W ′,ξ )
= eγ(Ψ(W )−Ψ(W ′)) = eγ(Ux̄(W )−Ux̄(W ′))

=
Λ(W ′,ξ ),(W,ξ )

Λ(W,ξ ),(W ′,ξ )

We now show that under a slight stronger assumption than (2.2), namely,

∑
x∈A

αx < ∑
y∈N(A)

βy ∀A ⊆X , (2.26)

the process (W (t),ξ (t)) restricted to W ×{0,1}X is ergodic. Denote by L the
subgraph of Lp restricted to the set W . Notice that, as a consequence of time-
reversibility, L is an undirected graph. Ergodicity is equivalent to proving that L is
connected. We start with a lemma analogous to previous Lemma 2.3.1.

Lemma 2.3.5. Suppose (G,α,β ) satisfies (2.26) and let W ∈W . Then, for every
ȳ ∈ X , there exists a sequence (2.21) satisfying the conditions (Sa), (Sb), and (Sc) as
in Lemma 2.3.1.

Proof. It is sufficient to follow the steps of to the proof of Lemma 2.3.1 noticing that
in (2.23) the first equality is now a strict inequality, while the last strict inequality
becomes an equality.

If W,W ′ ∈W are connected through a path in L, we write that W ∼W ′. Introduce
the following distance on W: if W 1,W 2 ∈W

δ (W 1,W 2) = ∑
x,y

|W 1
xy −W 2

xy|
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A pair {W 1,W 2} ∈W is said to be minimal if

δ (W 1,W 2)≤ δ (W 1′,W 2′) ∀W 1′ ∼W 1, ∀W 2′ ∼W 2

Notice that L is connected if and only if for any minimal pair {W 1,W 2}, it holds
W 1 =W 2.

Lemma 2.3.6. Let {W 1,W 2} be a minimal pair. Suppose y∈X is such that W 1
y < βy.

Then, W 1
xy =W 2

xy for all x ∈ X .

Proof. Suppose by contradiction that W 1
xy <W 2

xy for some x ∈ X . Then, necessarily,
there exists y′ ̸= y such that W 1

xy′ > W 2
xy′ . Consider then W 1′ = W 1 − exy′ + exy.

Since δ (W 1′,W 2)< δ (W 1,W 2), this contradicts the minimality assumption. Thus
W 1

xy ≥W 2
xy for all x ∈ X . This yields W 2

y < βy. Exchanging the role of W 1 and W 2

we obtain the thesis.

Proposition 2.3.7. If condition (2.26) holds true, the graph L is connected.

Proof. Let {W 1,W 2} be any minimal pair. We will prove that W 1 and W 2 are
necessarily identical. Consider any resource y. It follows from Lemma 2.3.5 that we
can find a sequence y = y0, x0, y1 · · · , yt−1, xt−1, yt satisfying the same (Sa), (Sb),
and (Sc) with respect to the state allocation W 1. Among all the possible sequences,
choose one with t minimal for given y. We will prove by induction on t that W 1

xy =W 2
xy

for all x ∈ X .

If t = 0, it means that W 1
y < βy. It then follows from Lemma 2.3.6 that W 1

xy =

W 2
xy for all x ∈ X . Suppose now that the claim has been proven for all minimal

pairs {W 1,W 2} and any y ∈ X for which t < t̄ (w.r. to W 1) and assume that y =

y0, x0, y1 · · · , yt̄−1, xt̄−1, yt̄ satisfies the properties (Sa), (Sb), and (Sc) with respect
to W 1.

Since Wxt̄−1yt̄−1 > 0 and yt̄ ∈ Nxt̄−1(W
1,1), it follows from property (ii) in the

definition of admissible families that W ′1 =W 1−(ext̄−1yt̄−1 −ext̄−1yt̄ )∈Mxt̄−1(W
1,1).

In other words, W ′1 ∼W 1.

Consider now W 2 and notice that Lemma 2.3.6 yields W 2
xt̄−1yt̄

= W 1
xt̄−1yt̄

< βyt̄ .
Define

W 2′ =

{
W 2 ifW 2

xt̄−1yt̄−1
= 0

W 2 − ext̄−1yt̄−1 + ext̄−1yt̄ ifW 2
xt̄−1yt̄−1

> 0
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Again, by property (ii) in the definition of admissible families, it follows that W ′2 ∼
W 2. Since δ (W 1′,W 2′)≤ δ (W 1,W 2), this implies that also {W ′1,W ′2} is a minimal
pair. Notice that y = y0, x0, y1 · · · , yt̄−1 satisfies (Sa), (Sb), and (Sc) with respect to
W 1′ . Therefore, by the induction hypotheses, it follows that W 1′

xy =W 2′
xy for all x ∈ X .

Since W 1
xy =W 1′

xy and W 2
xy =W 2′

xy , result follows immediately.

We can now state our final result.

Corollary 2.3.8. Assume that the following conditions hold

1. (G,α,β ) satisfies (2.26).

2. νon
x > 0, ν

o f f
x > 0, and νact

x > 0 for every x ∈ X ,

3. Mx̄(W,ξ ) is an admissible family.

Then, (W (t),ξ (t)), restricted to W×{0,1}X , is an ergodic time-reversible Markov
process whose unique invariant probability measure is given by

µγ(ξ ,W ) = Z−1
γ

[
∏

x:ξx=1
ν

on
x ∏

x:ξx=0
ν

off
x

]
eγΨ(W )

where Zγ is the normalizing constant.

Proof. Let (W,ξ ),(W ′,ξ ′)∈W×{0,1}X . It follows from the form of the transition
rates (2.20) and the fact that νon

x > 0 for all x, that the process (W (t),ξ (t)), starting
from (W,ξ ), will reach (W,1) in bounded time with positive probability. Combining
with Proposition 2.3.7 and using the fact that νact

x > 0 for all x, it then follows that
(W (t),ξ (t)) reaches (W ′,1) in bounded time with positive probability. Finally, from
(W ′,1) again the process reaches (W ′,ξ ′) in bounded time with positive probability.
This says that the process is ergodic and it thus possesses a unique invariant mea-
sure whose form can be derived by the time-reversibility property characterized in
Proposition 2.3.4.

Remark: It follows from previous result that the process W (t) converges in law
to the probability distribution

µ̃γ(W ) := Z̃−1
γ eγΨ(W )
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Notice that when γ →+∞, the probability µ̃γ converges to a probability concentrated
on the set argmaxW∈W Ψ(W ) of state allocations maximizing the potential. Thus, if
γ is large, the distribution of the process W (t) for t sufficiently large will be close to
a maximum of Ψ.

Remark: Condition (2.26) is necessary for ergodicity. Notice indeed that in the
case when G is complete and αx = βx = a for all x ∈ X , under every allocation W
such that Wy = a for every y, all resources will be saturated and, consequently, no
distribution move will be allowed in W . Such allocations W are thus all sinks in the
graph L that is therefore not connected.

2.3.1 An example

We include in this chapter only the following, very easy but substantial example to
validate the theoretical analysis. A wide set of simulation is shown in Chapter 6
where a number of parameter are calculated to measure the performance on different
aspects as, for instance, the distance from the optimum or the number of mover per
atom. In this example instead, we show the final state reached by the algorithm
varying the aggregation parameter. We believe that these matrix are very expressive
of the performance, since it is easy to recognize the equilibria. The very same
example will be recover in Chapter 6 to show its behavior parameters.

Example 2.3.9. Consider to have n = 10 users on a complete graph such that
αx = a = 45 and βx = b = 50 for every unit x. We consider the cases: Cagg =

−7,−1,1/2,3. First, we show the final states reached by the dynamics for a single
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run of the algorithm

W−7 =



0 5 5 5 5 5 5 5 5 5
5 0 5 5 5 5 5 5 5 5
5 5 0 5 5 5 5 5 5 5
6 5 5 0 6 5 6 6 0 6
5 5 5 5 0 5 5 5 5 5
5 5 5 5 5 0 5 5 5 5
5 5 5 5 5 5 0 5 5 5
5 5 5 5 5 5 5 0 5 5
5 5 5 5 5 5 5 5 0 5
5 5 5 5 5 5 5 5 5 0



W−1 =



0 5 3 5 5 4 8 7 6 2
9 0 3 4 4 1 6 7 6 5
1 3 0 6 5 6 6 3 8 7
6 1 6 0 6 10 7 0 5 4
3 6 7 8 0 6 2 8 0 5
2 8 9 6 4 0 3 7 5 1
8 3 7 5 9 7 0 0 0 6
4 5 4 4 3 4 5 0 8 8
1 9 2 3 8 1 7 8 0 6
8 10 5 3 3 7 3 4 2 0



W1/2 =



0 0 23 7 0 4 0 0 10 1
3 0 12 7 2 7 2 5 0 7
1 4 0 2 15 2 7 1 12 1
15 6 2 0 2 14 0 1 4 1
4 4 0 1 0 4 13 0 3 16
18 0 0 1 3 0 8 2 8 5
2 7 6 12 2 3 0 0 5 8
1 4 1 9 12 1 9 0 4 4
0 17 1 1 4 1 0 16 0 5
2 5 0 1 6 10 2 17 2 0
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W3 =



0 0 45 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45 0
0 0 0 0 0 0 45 0 0 0
0 0 0 45 0 0 0 0 0 0
0 45 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 45 0 0
0 0 0 0 0 45 0 0 0 0
0 0 0 0 0 0 0 0 0 45
0 0 0 0 45 0 0 0 0 0


For Cagg = 3 a matching allocation state is reached and it is a maximum of Ψ in

this case. For Cagg =−7 the solution is also very close to the maximum that is the
diffused allocation state. For Cagg = 1/2,−1, the presence of Nash equilibria that
are not maxima of Ψ slows down the dynamics and the algorithm does not reach the
maximum at time T . Increasing in this case the time horizon to T = 20∗∑α , the
final state of the system gets quite close to the maximum (this will be confirmed in
Chapter 6).
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Chapter 3

Inducing reciprocity in the model

3.1 Introduction

In this chapter, we consider a variant of the algorithm proposed in Chapter 2, giving
the resources the possibility to deny the allocation from a unit. We suppose that the
framework is the same as in Chapter 2 namely that there is a network of user who
are at the same time a source of data and a resource for storage.

The agents autonomously and at random activate and allocate or move their data
pieces among the neighboring units. Each unit has a utility function which gives a
value to their neighbors on the basis of their reliability, their current congestion, and
the amount of data the unit has already stored in them. Since the users are evaluated
by their reliability, we want to emphasize this aspect giving them a mechanism to
eventually exclude non trustworthy agents. To do that, we allow the resources to
evaluate the users, depending on his/her previous behavior, and to decide whether to
accept or deny the allocation. Including this mechanism induce a sort of reciprocity
in the dynamic forcing the mutual exchange of data. Intuitively, this is because more
reliable users are interested in using resources that are trustworthy as well. On the
other hand, resources are willing to accept data from agents that accepted stortage
already. This aspect is fundamental to avoid selfish behaviors.

In this chapter we also present a learning algorithm so that the agents have the
possibility to know the reliability of the neighbors during the allocation. This is a
realistic approach since in principle, when the users connect to the network, they are
not aware of the trustworthiness of the other agents.
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Reputation based algorithms, i.e. those process in which the dynamic is strictly
related to the reliability of the agents, are widely studied in literature. The remaining
part of this section is devoted to their revision. In the next section we recall some de-
tails of the model and we describe the reciprocity process and the learning algorithm.
In Section 3.3 we briefly describe the algorithm and prove the convergence results in
this case with reciprocity.

3.1.1 Reliability and reputation

In literature, there can be found many works on reputation-based systems but, as
far as we know, there are no paper where this mechanism is purposely related to an
allocation problem. On the other hand, some of the application of this methods are
on peer-to-peer systems [2, 4] and on the game theoretic approach [1, 5].

In this thesis we measure the reputation through the reliability parameter, i.e., a
quantity that express how much a resource is trustworthy. The level of reliability
in general depends on many factors (usually related to the quality of services), for
instance:

• the probability that, if contacted at random time, the resource is available to
give access to the stored data,

• the safety of the stored data from internal or external attacks,

• the speed of the transfer.

Reputation-based systems are used to establish trust among agent on a network.
The idea is that the behavior of past interactions determines the reliability of the
other users. Every agent maintains its own opinion on every other user he/she has
dealt with in the past and uses this information for possible interactions in the future.
This same idea of evaluating the agents on the past interaction is also used in [1].

The reason of this studies on reciprocity is that the intentions of the agents are
generally unknown. Hence, due to the uncertainty of their potential behavior we need
mechanisms to control the interactions among the agents, and protect good agents
from the selfish ones. Agents themselves can be capable of punishing non-desirable
behaviors, by for instance, not selecting certain resources.
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There are plenty of ways through which agents can obtain informations about a
user [3], among these: direct experiences, information gathered from other agents or
prejudice (not necessarily with a negative connotation).

The information can be stored by each agent (distributed) or by a global third-
party (centralized). There are no clear strategies due to their high dependency on the
context and both the cases are valuable. Clearly, in our case agents themselves will
store their own informations.

3.2 Learning reliability and inducing reciprocity

In this section, we describe two processes: (i) a learning process from which the
users get to know the reliability of their neighbors (ii) a reciprocity process that
enforce the mutual exchange of data. While the first one is independent on the
algorithm and do not directly affect it, the latter can alter the allocation/distribution
modifying the cooperation between the agents. In fact, the second is a part of the
algorithm and it influences the behavior of the users and the theoretical analysis.

Indicate the reliability parameter with λx,x ∈X . This quantity express how much
resource x is trustworthy. We take λx to be positive for all x ∈ X imaging that a
resource with negative reliability would never be chosen by the users. Recall that the
utility function of each user x is:

Ux(W ) = fx(Wx·)+ ∑
y∈N−

x

gy(W·y)

where W is the state of the system as defined in (2.10) and the two functionals are

fx(Wx·) =Call
∑
y

Wxy +Cagg
∑

y∈X
W 2

xy,

gy(Wy) =−Ccon
y (Wy)

2 or gy(W·y) =−Ccon
y |W·y|H

As we already explained in Chapter 2, the reliability parameter can be included
in the congestion term of the utility function. Depending on the interpretation of the
reliability parameter, we have the following cases.
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• If we give the user an incentive to use more reliable resources, we set

−Ccon
y = C(λy)> 0

for some positive continuous function C increasing in λy, y ∈ X . In this case,
a very easy example is to consider the reliability to be the probability of a
resource to be on;

• On the other hand, to have a classical congestion term one can see the relia-
bility as a negative parameter to discourage the use of more congested and
less reliable resources. In this case we can consider the reliability to be the
probability of the resource to be off.

When it is necessary, we call homogenous the case where all the users have the same
reliability. From now on, for simplicity, we consider the reliability as the probability
of finding a resource in functional state on, therefore λx ∈ [0,1] for all x ∈ X . We
recall that the functional state is indicated with ξ ∈ {0,1}X and when we refer to a
single user x we write ξx. Now we can describe the learning algorithm.

3.2.1 A learning mechanism

Suppose the users do not know a priori if a resource is reliable and they learn it
during the game. In general, the choice of an initial trust value depends on the
strategy followed: it can represent complete distrust, complete trust or neutral trust
[2]. We suppose that the initial value of λx is supposed to be equal 1 for each resource
x ∈ X . This assumption means that the units consider every resource as trustworthy.
Moreover, it ensure that at the beginning some atoms are allocated. Each user learn
the reliability of the resources he/she is allowed to use and each unit updates his/her
own opinion independently from the other users and only when the unit is on. The
details of the process are described below.

Each time a unit x wakes up, he/she is allowed to see the functional state ξy of
his/her neighbor y. We call λxy the estimated reliability, i.e., how x estimates the
reliability of resource y. We can describe the learning process as

λxy(t +1) =
t

t +1
λxy(t)+

1
t +1

ξy(t +1) (3.1)
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where ξy(t + 1) is the functional state of y at time t + 1. To be more precise we
should write txy to indicate the dependency of the time variable on the agents. This
time variable counts the number of times that users x interacts with resource y. Since
ξy ∈ {0,1}, (3.1) represent the fraction of time that user x found y in functional state
on.

Lemma 3.2.1. The sequences of {λxy(t)}t∈R converges to λy for t → ∞ for all
x,y ∈ X .

Proof. Follow from the Law of Large Numbers.

3.2.2 The Reciprocity Process

In this section we describe the reciprocity process. From now on, when we consider
a couple of agents, we suppose that both the units are in functional state on. An
interesting point of view on the choice of probabilities is the one from [1]: the agents
measure the size of the gifts received in the previous interactions and weight the
other agents with these informations.

On the other hand, our reciprocity mechanism is guided by a quantity, called
from now on probability of acceptance that influence the decisions of the resources.
In fact the probability of acceptance ρyx(t) represent the probability that resource
y accept data from user x. The time variable t is a user dependent variable since it
counts the number of interaction between user x and resource y. We avoid to write
txy to lighten the reading.

We propose three different probabilities of acceptance: the first one take into
consideration the number of times that a resource refused the allocation; the second
emphasizes on the mutual behavior considering the reliability of the two users and
the quantities already allocated; the latter evaluates the behavior of the units as a
source of data and as a resource. For simplicity in the following definitions we
suppose that λy is fixed and know by all the agents a priori. Clearly, if we introduce
the learning algorithm also this parameter will be time and user dependent. The three
probabilities are defined as follow.

1. (Number of refusal) First, we define the estimated probability of acceptance

ωyx(t +1) =
t

t +1
ωyx(t)+

1
t +1

µ(t +1).



68 CHAPTER 3. INDUCING RECIPROCITY IN THE MODEL

This quantity is learned in time and depends on the variable µ(t) that take
values

µ(t +1) =

1 if x accept

0 otherwise.

ωyx counts the fraction of time that x accepted data from y therefore it represent
an estimation of the probability that resource x will accept the storage in the
future. Notice that in this case the time variable counts the number of times
that user y tried to allocate in resource x. We set

η
y
x (t) = λx ∗ωyx(t).

to be a weighted estimation that include also the reliability of the user who
wants to allocate. Taking into consideration λx is in the interest of resource y
for his/her future allocation since it gives preference to more reliable resources.
Finally, the probability of acceptance is defined as

ρyx(t) = min
{

η
y
x (t)+λxWyx(t)
λy(Wxy(t)+1)

,1
}

(3.2)

Taking the minimum with 1 is to guarantee that ρ is a probability; we will
prove this result later in this chapter.

2. (Mutual behavior) A more intuitive approach is to emphasize the mutual
behavior, considering the reliability and the quantities already allocated. For
this reason the probability of acceptance depend on the reliabilities of the two
agents, λx and λy, and the quantities Wyx(t) and Wyx(t). In fact, we define

ρyx(t) = min
{

λx(Wyx(t)+1)
λy(Wxy(t)+1)

,1
}
. (3.3)

Since (3.3) is always positive, it is a probability. Moreover, it is a particular
case of the previous probability of acceptance (ωyx(t) = 1 for all t ≥ 0 or,
equivalently, η

y
x (t) = λx).
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3. (Source/Resource) The last case evaluates a unit comparing his/her behavior
as a source and as a resource:

ρyx(t) = δ
λxWyx(t)

∑
x∈Ny

λxWyx(t)
+(1−δ )

λyWyx(t)
∑

x∈Ny

λyWyx(t)

= δ
λxWyx(t)

∑
x∈Ny

λxWyx(t)
+(1−δ )

Wyx(t)
∑

x∈Ny

Wyx(t)

(3.4)

where δ ∈ [0,1] is a tuning parameter. The first term evaluates user y, who acts
as a resource, as a source comparing the quantity allocated in x with respect
to the other resources in his/her neighborhood; the second term evaluates y as
a resource counting the data allocated by x in relation with the data allocate
by the other sources in the neighborhood. In other words, this probability
compares the behavior of the resource with respect to the agent who wants to
allocate and to the resources in the neighborhood.

The following lemma gives a condition for the probability of acceptance as
defined in equation (3.2) to be positive. From this lemma it follows that (3.2) is a
probability.

Lemma 3.2.2. At any time t, the probability of acceptance defined in equation (3.2)
is positive if the initial estimated probability ωyx(0)> 0.

Proof. Since the probability of acceptance depends on the allocated data, we study
when those quantities are zero. Suppose that at time t > 0 units x and y are interacting.

• If Wyx(t) ̸= 0 and Wyx(t) ̸= 0

λxωyx(t)+λxWyx(t)
λy(Wyx(t)+1)

> 0

• If Wyx(t) ̸= 0 and Wyx(t) = 0

λxωyx(t)+λxWyx(t)
Wyx(t)+1

=
λxωyx(t)

λy(Wyx(t)+1)
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• If Wyx(t) = 0 and Wyx(t) = 0

λxωyx(t)+λxWyx(t)
λy(Wyx(t)+1)

=
λxωyx(t)

λy

In the last two cases, the fraction is positive if ωyx(t) > 0 and this follow by the
definition assuming ωyx(0)> 0.

Taking ωyx(0)> 0 is a realistic choice: it means that at the beginning agents trust
each other and suppose that other neighbors will accept their their data for storage.

3.3 The algorithm with reciprocity

The allocation algorithm we are proposing is a variation of the algorithm proposed
in Chapter 2. It is fully distributed, asynchronous and based on communications
between units connected on the graph G = (X ,E).

At every instant of time, a unit is either in functional state on or off. A unit,
which is currently in state on, can activate and either allocate or move an atomic
piece of its data among the available resources. The choice of the available resource
where to allocate will be following a noisy best response dynamics where the utility
maximization is based on a Gibbs probability distribution. A resource accepts the
allocation following one of the probabilities (3.2)-(3.4). The functional state of the
network at a certain time will be denoted by ξ ∈ {0,1}X : ξx = 1 means that the unit
x is on. The times when units modify their functional state (off to on or on to off)
and the times when units in functional state on activate are modeled as a family of
independent Poisson clocks whose rates will be denoted (for unit x), respectively,
νon

x , ν
o f f
x , and νact

x . The functional state of the network as a function of time ξ (t) is
thus a continuous time Markov process whose components are independent Bernoulli
processes.

We now recall some notation and definitions from Chapter 2. Given a (possibly
partial) allocation state W ∈Wp, a functional state ξ ∈{0,1}X , and a unit x̄∈X such
that ξx̄ = 1, the possible partial allocation states obtainable from W by modifications
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done by the unit x̄ are:

Wx̄(W,ξ ) =

{
W ′ ∈Wp :

W ′
xy =Wxy if x ̸= x̄ or ξy = 0

W ′x̄ ≥W x̄, W ′ ̸=W

}
. (3.5)

Since the sets Wx̄(W,ξ ) can in general be very large, it is convenient to consider a
smaller set of actions where units either allocate new data or simply move data from
one resource to another one. Given (W,ξ ) ∈Wp ×{0,1}X and a unit x̄, set

Nx̄(W,ξ ) := {y ∈ Nx̄ |Wx̄y < βy, ξy = 1} (3.6)

the set of available neighbor resources for x̄ under the allocation state W and the
functional state ξ : those that are on and still have space available.

A family of sets Mx̄(W,ξ ) ⊆ Wx̄(W,ξ ), defined for each x̄ ∈ X and each
(W,ξ ) ∈Wp ×{0,1}X , is called admissible if

(i) W x̄ < αx̄, y ∈ Nx̄(W,ξ ),⇒∃n : W ′ =W +nex̄y ∈Mx̄(W,ξ );

(ii) Wx̄y′ > 0, ξy′ = 1, y′′ ∈ Nx̄(W,ξ )⇒W ′ =W +(ex̄y′′ − ex̄y′) ∈Mx̄(W,ξ );

(iii) W ′ ∈Mx̄(W,ξ ) iff W ∈Mx̄(W ′,ξ ) for every W ∈W .

Examples of admissible families Mx̄(W,ξ ) can be found in Chapter 2, Section
2.2.1.

Given an admissible family Mx̄(W,ξ ), we recall the Gibbs measure on it. Given
a parameter γ > 0, put

Z(W,ξ )
x̄ (γ) = ∑W̃∈Mx̄(W,ξ ) eγUx̄(W̃ )

Z(W,W ′,ξ )
x̄ (γ) = max

{
Z(W,ξ )

x̄ (γ),Z(W ′,ξ )
x̄ (γ)

} (3.7)

Now define, for W ′ ∈Mx̄(W,ξ ),

P(W,ξ )
x̄ (W ′) =


eγUx̄(W

′)

Z(W,ξ )
x̄ (γ)

, if ||W ||< ||W ′||
eγUx̄(W

′)

Z(W,W ′,ξ )
x̄ (γ)

, if ||W ||= ||W ′||
(3.8)
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where ||W ||= ∑xyWxy, and complete it to a probability by putting

P(W,ξ )
x̄ (W ) = 1− ∑

W ′∈Mx̄(W,ξ )

P(W,ξ )
x̄ (W ′)

The algorithm is completely determined by the choice of the admissible family
Mx̄(W,ξ ), the probabilities (3.8) and the probability of acceptance (3.2)-(3.4). If unit
x̄ activates at time t, the systems is in partial allocation state W (t), and in functional
state ξ (t), it will jump to the new partial allocation state W ′ with probabilities given
by

P(W (t+) =W ′) = P(W (t),ξ (t))
x̄ (W ′)ρ(W (t),W ′), W ′ ∈Mx̄(W (t),ξ (t)) (3.9)

With an abuse of notation we write ρ(W,W ′) to indicate the probability of acceptance
in relation with the allocation states:

ρ(W (t),W ′) = ρyx̄(t) if ξx̄ = 1,W ′ ∈Mx̄(W (t),ξ ),W ′
x̄y >Wx̄y(t) (3.10)

that is, x̄ is trying to allocate/move in resource y. If unit x̄ chooses a W ′ such that
||W ′||> ||W || we say that it makes an allocation move, otherwise, if ||W ′||= ||W ||,
we talk of a distribution move.

3.3.1 Analysis of the algorithm

We now show the convergence of the algorithm with reciprocity. We prove that if
the allocation is possible, the algorithm will reach such an allocation in bounded
time with probability 1. We recall that a necessary and sufficient condition for the
allocation is that

∑
x∈D

αx ≤ ∑
y∈N(D)

βy ∀D ⊆X (3.11)

This result was proven in Theorem 2.1.1 in Chapter 2.

Notice that, also in this case, the process W (t) is a Markov process conditioned to
ξ (t), the functional state process. Therefore, if we consider the process (W (t),ξ (t))
including the reciprocity probabilities, we have that the process is Markovian and
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the transition rates are:

Λ(ξ ,W ),(ξ ′,W ) =

{
νon

x̄ ifξx̄ = 0, ξ ′
x̄ = 1, ξx = ξ ′

x∀x ̸= x̄

ν
o f f
x̄ ifξx̄ = 1, ξ ′

x̄ = 0, ξx = ξ ′
x∀x ̸= x̄

(3.12)

Λ(ξ ,W ),(ξ ,W ′) = ν
act
x̄ P(W,ξ )

x̄ (W ′)ρ(W,W ′) if ξx = 1,W ′ ∈Mx̄(W,ξ ) (3.13)

The statements proven in Chapter 2 holds also in this case. In fact, considering
that there is a non-zero probability that the process (ξ (t),W (t)) starting from (ξ ,W )

will reach (1,W ) in bounded time (because of the presence of transitions (3.12)),
standard probabilistic arguments will then allow to conclude that allocation will be
achieved in bounded time with probability 1.

Lemma 2.3.1 that we proved in Section 2.3 holds also in this case regardless
of the reciprocity process. Given the sequence of Lemma 2.3.1, we can prove the
equivalent of Theorem 2.3.2 that is, we can prove that it is possible to reach a full
allocation state on the graph Lp where an edge (W,W ′) is present if and only if
W ′ ∈Mx̄(W,1). From this result it follows the convergence result with probability
of acceptance defined as in (3.2) and (3.3).

Theorem 3.3.1. Assume that

1. νon
x > 0 and νact

x > 0 for every x ∈ X ,

2. Mx̄(W,ξ ) is an admissible family,

3. (G,α,β ) satisfies (3.11)

4. ρ(W,W ′) is defined as in (3.2) and ωyx(0)> 0 for all y,x ∈ X

Then,
P(∃t0 |W (t) ∈W∀t ≥ t0) = 1

Proof. Follows with the same reasoning of Theorem 2.3.2 in Chapter 2, considering
that there is a positive probability of acceptance.

Theorem 3.3.2. Assume that
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1. νon
x > 0 and νact

x > 0 for every x ∈ X ,

2. Mx̄(W,ξ ) is an admissible family,

3. (G,α,β ) satisfies (3.11)

4. ρ(W,W ′) is defined as in equation (3.3).

Then,
P(∃t0 |W (t) ∈W∀t ≥ t0) = 1.

Proof. Follow because (3.3) is a particular case of (3.2).

3.4 Conclusion

In this chapter we described a variant of the allocation algorithm proposed in Chapter
2. We introduce a learning process to allow the agents to know the reliability of
his/her neighbors proving the convergence to the exact value of λx for all x ∈ X .
Moreover we study the algorithm with reciprocity including a process that influence
the allocation depending on the previous behavior of the agents. For this algorithm
we prove that an allocation state can be reached in bounded time with probability 1.
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Chapter 4

Estimation of the allocation time

4.1 Introduction

In this chapter, we study the convergence time of the allocation algorithms described
in the previous chapters. Recall that in our allocation problem a population of units
is connected through a network and each of the units possesses a number of items
that need to be allocated among the neighboring resources.
We focus on estimating the allocation time, analyzing the different algorithms. The
goal is to estimate the average time for the allocation or at least to give some bounds.
Indeed, we give an upper bound using the Coupon Collector’s problem [4] and using
the properties of the associated Markov chain [3] we find the average allocation time
of the algorithms described in Chapter 2 and in Chapter 3.

In the next section we recall the algorithms studied, then we analyze the conver-
gence time. Section 4.3 is devoted to computing the upper bound and the average
time for allocation is calculated in Section 4.4. The chapter ends with a simulation
section, that validates the estimations, and some conclusions.

4.2 The model and the algorithms

In this section we briefly describe the model and we recall some notation. Consider
a set X of units which play the double role of users who have to allocate externally a
back up of their data, as well resources where data from other units can be allocated.
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We assume units to be connected through a directed graph G = (X ,E). Each unit x
is characterized by two non negative integers: αx which is the number of data atoms
that unit x needs to back up, and βx which is the number of data atoms that unit x
can accept and store from his neighbors; they are assembled in two vectors α and
β . Recall that the data possessed by the units can be seen as quantized atoms of the
same size. In fact, A is the set of all atoms to be allocated:

Ax = {(x,a) |a ∈ {1, . . . ,αx}}, A=
⋃

x∈X
Ax.

Finally, each agent has a reliability λx that for simplicity, from now on, we
interpret as the probability of finding a resource in functional state on following the
considerations in Chapter 3. The functional state of the network at a certain time is
denoted by ξ ∈ {0,1}X : ξx = 1 means that the unit x is on.

The allocation algorithm we are proposing is fully distributed, asynchronous and
based on communications between units connected on the graph. We consider the
fact that units can be disconnected from the network and that resources can accept or
deny the allocation from other users.

From now on, we call homogenous case the case where all users have the same
amount of data to allocate αx = a for all x ∈ X . If moreover the users have also the
same reliability λx = l for all x ∈ X , we call the case uniform.

4.3 An upper bound for the homogeneous case

Consider the homogenous case and, without loss of generality, suppose they also
have the same amount of available space βx = b for all x ∈ X . We suppose that
resources are always on and we do not include the reciprocity process.

Consider the set A of all atoms; since all the users have the same amount of data,
the probability to pick an atom (and allocate it) is equal for all atoms (x,a). For this
reason, the problem can be interpreted as the Coupon Collector’s Problem [4]. The
Coupon Collector’s Problem answer the question of how many trials are necessary
to collect all the types of coupons. In the following subsection we describe in details
the Coupon Collector’s Problem and recall some results on the expected number of
trials, then we show how this estimation can be useful in the allocation problem.
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4.3.1 The Coupon Collector’s Problem

The CEO of Bubbleburst bubble gum company decides to include a picture card of
a famous football player in each pack of bubble gum to be sold. A complete set of
cards consists of ten players and the distribution of the cards is uniform: a pack of
gum is just as likely to contain a picture of anyone of the ten players. How many
packs of bubble gum does a football fan have to buy, on the average, to complete
the set? This example, taken from [2], is only one of the possible applications of
the Coupon Collector’s Problem. In the following we consider a more general case,
following the approach used in [4].

Suppose to have k types of coupons and that at each trial a coupon is chosen at
random. Each type of coupon is equally likely and the random choices are mutually
independent. The aim of the problem is to study the relation between the number of
trials and the probability of collecting at least one copy of each type of coupon.

Let T be a random variable representing the number of trials required to collect
at least one copy of each type of coupon. We first determine the expected value of T.
Let C1,C2, . . . ,Cn be the sequence of trials where Ci ∈ {1, . . . ,k} denotes the type of
the coupon drawn in the i-th trial. We call a trial Ci a success if the type Ci was not
drawn in any of the previous i−1 selections. Clearly C1 and CT are always successes.
Divide the sequence into epochs: each epoch i begins with the i-th successful trial
and ends with the trial of the (i+ 1)-th success. Let Ti, for 0 ≤ i ≤ n− 1, be the
random variable representing the number of trials in the i-th epoch, so that

T =
n−1

∑
i=0

Ti.

Let pi denote the probability of success on any trial of the i-th epoch, i.e.,

pi =
k− i

k
,

the probability of drawing one of the n− i remaining coupon types. Since the random
variable Ti is geometrically distributed with parameter pi, it holds that

E[Ti] =
1
pi

and Var(Ti) =
1− pi

pi
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By linearity of the expected value,

E[T ] = E

[
k−1

∑
i=0

Ti

]
=

k−1

∑
i=0

E[T ] =
k−1

∑
i=0

k
k− i

= k
k

∑
i=1

1
i
= kHk.

Hk is the k-th Harmonic number and it is asymptotically equal to lnk+Θ(1),
then

E[T ] = k lnk+O(k)

We now recall some results from [4] that show that the value of T is sharply concen-
trated around its expected value, that is, it is unlikely to deviate from its expected
value.

Theorem 4.3.1 (Theorem 3.8 in [4]). Let the random variable T denote the number
of trials for collecting each of the k types of coupons. Then, for any constant c ∈ R,
and m = k lnk+ ck,

lim
k→∞

P[T > m] = 1− e−e−c
.

In the following corollary we summarize some other estimation that follows form
Theorem 4.3.1.

Corollary 4.3.2. Let the random variable T denote the number of trials for collecting
each of the k types of coupons. Then, for any constant c ∈ R, it holds

• lim
k→∞

P[T < k(lnk− c)] = e−ec

• lim
k→∞

P[T > k(lnk+ c)] = 1− e−e−c

• lim
k→∞

P[k(lnk− c)< T < k(lnk+ c)] = e−ec − e−e−c

From Corollary 4.3.2 it follows that, with high probability, the number of trials
for collecting all k coupon lies in a small interval centered in its expected value.

4.3.2 Allocation as a Coupon Collector’s Problem

Since we consider the homogenous case with also βx = b for all x ∈ X and we
suppose the all resources are always on (i.e., λx = 1 for all x ∈ X ), we have that the
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probability to pick an atom (and allocate it) is equal for all atoms (x,a) ∈A. We can
apply the estimation on the Coupon Collector’s Problem in our case, considering the
coupons as the atoms to be allocated and the number of types as the total number of
atoms. This lead to the following proposition.

Proposition 4.3.3. The allocation time in the uniform case is of order |A| ln |A|
where |A| is the cardinality of the set of atoms to be allocated.

Remark 4.3.4. Notice that the same estimate holds also in the case where resources
are on with a fixed probability equal for all the resources (λx = l for all x ∈ X ) and
in the case with reciprocity.
In the first case the probability of allocating an atom depends on the probability of
finding the resource on. If the agents have different reliabilities it is sufficient to take

λmin = min
x∈X

λx

to have the same probability for all the atoms.
In the latter case, it is sufficient to consider the worst case scenario taking the
minimum probability of acceptance that rises in the case where user x has already
allocated her entire amount of data α while agent y has not allocated anything. The
probability of acceptance (3.2) - (3.4) reduce to:

• (number of refusal)
ρyx =

ω

α +1
for all x,y ∈ X

• (mutual behavior)

ρyx =
1

α +1
for all x,y ∈ X

• (source/resource)
ρyx = (1−δ )

α

β

Since in both the cases the probability is the same for all the resources, the Coupons
Collector’s Problem gives the same estimation.
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4.4 Average allocation time

Since the previous estimation is an overestimation, in this section we focus on the
average time of allocation. We begin the analysis with the study of the associated
Markov chain. We consider the case where resources can be on with a certain
probability and the case with reciprocity. To describe the process we reduce to a case
with only two agents, then we generalize.

First, we state some definitions (taken from [1, 3]) useful for the estimations.
Given a Markov chain, the hitting time for a state is the first time at which the state
is visited. A state of a Markov chain is called an absorbing state if the probability of
jumping in another state is equal zero or, in other words, the probability of remaining
in the same state is equal one. The absorbing time is the expected number of steps
before the chain is absorbed, that is, before it reaches an absorbing state.

The associated Markov chain in the case with two agents is described as follow.
Let the states of the system be the couples of allocated data (Wxy(t),Wyx(t)), where
x and y are the two units. Suppose that they have to allocate the quantities αx and αy

respectively and that they have enough available space βx = βy = b for the allocation.
Notice that the underlying graph of the Markov chain is a grid whose absorption
state is the state corresponding to the full allocation of both users (αx,αy).

(0,0)

(0,1)

(1,0)

(0,2)

(2,0)

(1,1) (2,1)

(1,2) (2,2)

(αx −2,0) (αx −1,0) (αx,0)

(αx −1,1)
(αx,1)

(αx −1,αy −1)

(αx,αy)(αx −2,αy) (αx −1,αy)(1,αy)(0,αy)

(0,αy −1) (αx,αy −1)

. . .

...

. . .

...

Fig. 4.1 Underlying graph of the associated Markov chain
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Remark 4.4.1. Notice that the possibile path, in the uniform case, from (0,0) to
(α,α) are bijective with the Grand-Dyck paths. This means that there are(

2α

α

)
≈ 4α

√
πα

possible ways to the complete allocation. Moreover, depending on the algorithm
there could be self loops.

4.4.1 Average time in the network cloud storage model

The first case study is the case without reciprocity. In this case, the probability
of allocation depends on the probability of finding the resource in functional state
on (for simplicity we suppose it is the reliability itself), therefore the transition
probabilities are, if Wxy ̸= αx,Wyx ̸= αy:

Λ(Wxy,Wyx),(W ′
xy,W ′

yx)
=


λx
2 if W ′

xy =Wxy,W ′
yx =Wyx +1

λy
2 if W ′

xy =Wxy +1,W ′
yx =Wyx

1− λx+λy
2 if W ′

xy =Wxy,W ′
yx =Wyx.

On the other hand, if one of the two users has already allocated his/her entire amount
of data, the transition probabilities are:

Λ(Wxy,αy),(W ′
xy,αy) =

λy if W ′
xy =Wxy +1

1−λy if W ′
xy =Wxy,

Λ(αx,Wyx),(αx,W ′
yx)

=

λx if Wyx =W ′
yx +1

1−λx if Wyx =W ′
yx,
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The expected absorbing time can be obtained solving the following system of equa-
tions [3]:

E[αx,αy] = 0

E[Wxy,αy] = 1+(1−λy)E[Wxy,αy]+λyE[Wxy +1,αy] if Wxy ̸= αx

E[αx,Wyx] = 1+(1−λx)E[αx,Wyx]+λxE[αx,Wyx +1] if Wyx ̸= αy

E[Wxy,Wyx] = 1+
λx

2
E[Wxy,Wyx +1]+

λy

2
E[Wxy +1,Wyx]

+

(
1− λx +λy

2

)
E[Wxy,Wyx] if Wxy ̸= αx,Wyx ̸= αy

Notice that here, the absorbing time coincide with the allocation time, therefore we
set τabs to indicate the average allocation (absorbing) time. Solving the system we
have:

τabs = E[0,0] =
αxλx +αyλy

λxλy
. (4.1)

Remark 4.4.2. This approach holds also in the homogeneous case. Suppose that
the users have a quantity αx = αy = a to allocate, then:

τabs = E[0,0] = a
(

λx +λy

λxλy

)
.

The following theorem is a generalization of result (4.1) to the uniform case.
Notice that in the case with |X |= n it is more appropriate to talk about hitting time
since we are interested in te first time that the system reaches a full allocation state.
On the other hand, we still use the notation τabs because whenever the system reaches
a full allocation state, it can never exit form the set W . Therefore, the allocation time
is

τabs = min{t ≥ 0 : W ∈W}

that is, the first time that one of the set of full allocation states is visited by the chain.

Theorem 4.4.3. In the uniform case with n users it holds that

τabs =
nα

λ
.
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Proof. The states of the systems are the amounts of data allocated by each user
W x = ∑y∈X Wxy and the transition probabilities are:

Λ(W x),(W ′x) =

λ

k if W ′x =W x +1 and W x ̸= α ∀x ∈ X
1−λ if W ′x =W x,

where k is the number of possible allocation. The result follows as in (4.1).

4.4.2 Average time of the algorithm with reciprocity

Now, we focus on the case with reciprocity. We limit our analysis to the mutual
behavior probability of acceptance, that is,

ρyx(t) = min
{

λx(Wyx(t)+1)
λy(Wxy(t)+1)

,1
}
.

If we consider the uniform case, then the probability of allocation is given by the
probability of acceptance. Also in this case it is possible to write the transition
probabilities of the associated Markov chain:

Λ(Wxy,Wyx),(W ′
xy,W ′

yx)
=



1
2 if Wxy ≤Wyx and W ′

xy =Wxy +1,W ′
yx =Wyx

or Wxy ≥Wyx and W ′
xy =Wxy,W ′

yx =Wyx +1

1
2 −

Wyx+1
2(Wxy+1) if Wxy >Wyx and W ′

xy =Wxy,W ′
yx =Wyx

1
2 −

Wxy+1
2(Wyx+1) if Wxy <Wyx and W ′

xy =Wxy,W ′
yx =Wyx

Wyx+1
2(Wxy+1) if Wxy >Wyx and W ′

xy =Wxy +1,W ′
yx =Wyx

Wxy+1
2(Wyx+1) if Wxy <Wyx and W ′

xy =Wxy,W ′
yx =Wyx +1
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Again, the expected time of absorption can be obtained solving the system:

E[α,α] = 0

E[Wxy,α] = α −Wxy

E[α,Wyx] = α −Wyx

E[Wxy,Wyx] = 1+
1
2
E[Wxy +1,Wyx]+

1
2
E[Wxy,Wyx +1] if Wxy =Wyx

E[Wxy,Wyx] = 1+
Wyx +1

2(Wxy +1)
E[Wxy +1,Wyx]+

1
2
E[Wxy,Wyx +1]+

+

(
1
2
− Wyx +1

2(Wxy +1)

)
E[Wxy,Wyx] if Wxy >Wyx

E[Wxy,Wyx] = 1+
Wxy +1

2(Wyx +1)
E[Wxy,Wyx +1]+

1
2
E[Wxy +1,Wyx]+

+

(
1
2
− Wxy +1

2(Wyx +1)

)
E[Wxy,Wyx] if Wxy <Wyx

In this case, the analytical solution is not easy to obtain, since the nodes of the chain
have different degrees, but in the simulation section a number of examples validate
the approach.

An interesting thing about the chain associated to the algorithms is that it is
possibile to compute the probability of a path. In particular we are interested in the
best and the worst path from (0,0) to (α,α) since we want the worst case to happen
with a very low probability. Notice that the worst case is when the algorithm moves
on the border of the grid while the best choice is moving on the diagonal (since the
grid is symmetric we study only the upper-right path).

(0,0)

(α,α)

Fig. 4.2 Paths on the underlying graph of the Markov chain
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Doing some computation we have that the worst case happen with probability

Pborder =
1

2α(α!)
,

while the diagonal path is more likely to happen:

Pdiag =
1

22α−1 .

4.5 Simulations

In this section, we present a number of numerical simulations that validate our
theoretical results and show the behavior of the proposed algorithm.

Below we report the basic assumptions of our simulations.

• Most of our simulations will be for n = 2 or n = 50 units.

• We consider two possible underlying networks, a complete graph and a regular
graph with degree 10.

• We consider the case of homogeneous populations where all units have the
same αx, βx and λx, x ∈ X , as well heterogeneous cases with two subpopula-
tions X1 and X2 sharing different parameters.

• In the utility function we set the congestion parameter to be Ccon = 1 while we
consider different values for the aggregation parameter Cagg. The allocation
constant is fixed

Call = 3(||α||∞|Cagg|+ ||β ||∞Ccon)

according to Chapter 2.

• In the implementation of the algorithm, time is supposed to be discrete, assum-
ing that at each instant of time a unit x wakes up with a probability proportional
to αx.
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• The parameter γ in the Gibbs distribution is chosen to be time-varying with
the law:

γ(t) = γ(t −1)+
1

n∗1000
where n is the number of agents.

For all the examples, the performance of the algorithm will be analyzed consider-
ing the following parameters computed, in a Montecarlo style, by averaging over 10
running of the algorithm.

• Time horizon: for every example we note the upper bound given by the
Coupon Collector’s Problem to make a comparison with the average time of
allocation. Therefore, the time horizon is given by Proposition 4.3.3, i.e.,

T = |A| log |A|

where |A| is the total amount of atoms to be allocated.

• Absorbing time: τabs is the average absorbing (hitting) time computed solving
the systems of Sections 4.4.1 and 4.4.2 or using Theorem 4.4.3. Indeed, in the
case without reciprocity we compute τabs the the formula (4.1) while in the
other case we use the Matlab software to solve the system.

• Average time of allocation: τall is computed counting the number of iteration
needed to allocate all the data atoms and it is compared to the value estimated
with the Markov chain absorbing time τabs.

The first example is for two users and it compare different settings. Later we
consider more users and different topologies.

Example 4.5.1. Consider to have two users, each of them having a quantity βx =

βy = 50 of available space. We study the behavior of the algorithm without reciprocity
varying the amount of data to allocate and the reliability of the resources. In
particular we consider:

1. αx = αy = 45 and λx = λy = 0.8,

2. αx = αy = 45 and λx = 0.8, λy = 0.5,
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3. αx = 45, αy = 40 and λx = λy = 0.8,

4. αx = 45, αy = 40 and λx = 0.8, λy = 0.5.

Table 4.1 shows the parameters in the cases listed above. As one can see, the
numbers of iterations needed is close to the esteemed absorbing time, confirming
that the estimation is correct.

Table 4.1 Allocation time with varying reliability

Case 1 Case 2 Case 3 Case 4
T 404.9829 404.9829 377.6254 377.6254
τabs 112.5000 146.2500 106.2500 140.0000
τall 110.000 142.6000 105.9000 138.1000

Example 4.5.2. Consider to have two users, each of them having a quantity αx =

αy = 45 to be allocated and suppose βx = βy = 50 and λx = λy = 1. We now show
the time parameter for the algorithm with reciprocity. In this case we have:

Table 4.2 Allocation time with reciprocity

T 404.9829
τabs 96.8000
τall 96.5000

Figure 4.3 shows how the time of allocation vary trough the samples. The blue line
indicates τabs, the dotted line is the average and the stars are the single allocation
times.

1 2 3 4 5 6 7 8 9 10

90

92

94

96

98

100

102

104

Fig. 4.3 Average allocation time and samples
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The last example is for 50 users to evaluate the estimations also for higher
numbers of agents.

Example 4.5.3. Consider to have n= 50 users on a complete graph and on a regular
graph with degree 10. Each of them has αx = 45 and βx = 50. We choose λx = 1
and later λx = 0.8 for all x ∈ X . The following tables shows the time parameters.

Table 4.3 Performance parameters for n = 50

(a) λx = 1

Complete Regular
T 7815200 7815200
τabs 2250 2250
τall 2263.3000 2335.9000

(b) λx = 0.8

Complete Regular
T 7815200 7815200
τabs 2812.5000 2812.5000
τall 2821.7000 2816.4000

4.6 Conclusions

In this section we give an upper bound for the allocation time and we compute, in
some particular cases, the average time needed to complete the allocation.

Even if a final section with simulations confirms the estimations, some more
work in the estimation is needed. Indeed, a more tight bound would be of high
interest because it would give a reasonable horizon for practical applications. On
the other hand, the average allocation time is a good measure of the speed of the
algorithm but it must be studied in more general frameworks.
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Chapter 5

A diversified allocation algorithm

5.1 Introduction

In this chapter we focus on a more secure version of the algorithm. In particular we
are interested in the possibility for the agents to recover the data. To this aim we
allow the user to allocate more than one copy of their atoms. This diversification
increase the probability to recover the stored data even though some resources are
in functional state off and guarantee a higher safety in case of a breakdown. The
optimum degree of diversification depend on the case and we suppose it is fixed a
priori.

The game theoretic background is the same as in Chapter 2. The aim of the
user is to maximize his/her payoff and at the same time to complete the allocation
of all the copies of his/her backup. The game is potential and following standard
optimization analysis [2] we show that the maximum of the potential function are
indeed Nash Equilibria.

In the next section we describe the details of the problem, following Chapter 2
and expanding, where necessary, the definitions. Later we describe the allocation
condition and study the equilibria of the game. Finally, we describe and analyze the
allocation algorithm.
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5.2 The allocation problem

Consider a set X of units which will play the double role of users who have to
allocate a back up of their data, as well resources where data from other units can be
allocated. Each unit x ∈ X is characterized by three parameters:

• αx which is the amount of data she needs to allocate outside

• βx which is the amount of memory available to allocate data from other units

• λx which is the reliability

Recall that the quantities {αx} and {βx} are assembled in the vectors α and β

respectively. The number of copies to be stored is indicated with σ , fixed a priori
and equal for all the agents. We assume units to be connected through a directed
graph G = (X ,E) where a link (x,y) ∈ E means that unit x is allowed to storage data
in unit y. We denote by

Nx := {y ∈ X |(x,y) ∈ E}, N−
y := {x ∈ X |(x,y) ∈ E} (5.1)

respectively, the out- and the in-neighborhood of a node. Goal of every unit x is
to allocate σ distinct copies of its data into other units available storage with the
constraint of putting different copies into distinct resources. Recall that A is the set
of all the atoms to be allocated:

Ax = {(x,a) |a ∈ {1, . . . ,αx}}, A=
⋃

x∈X
Ax

and define

Sx = {(x,a,s) |a ∈ {1, . . . ,αx},s = 1, . . . ,σ}, S =
⋃

x∈X
Sx

the set of all the copies of all the atoms to be allocated. Analogously the set of all
the atoms of available storage is indicated with

By = {(y,b) |b ∈ {1, . . . ,βy}}, B =
⋃

y∈X
By.
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Given the quadruple (G,α,β ,σ), we define an allocation as any map

Q : S →X

satisfying the properties described below.

(QC1) Graph constraint If (x,y) ̸∈ E , then Q(x,a,s) ̸= y for every (x,a,s) ∈ S.

(QC2) Storage limitation For every y ∈ X ,

|Q−1(y)| ≤ βy

(QC3) Diversification Q(x,a,s) ̸= Q(x,a,s′) for any s ̸= s′, any x ∈ X and any
(x,a,s) ∈ S.

The fact that Q(x,a,s) = y means that user x has allocated the copy s of the data
atom a into resource y. Clearly, if σ = 1 we have the original allocation problem
as defined in Chapter 2. We will say that the allocation problem is solvable if an
allocation Q exists. We denote by Q the set of allocations. We will also need to
consider partial allocations, namely maps Q : D →X where D ⊆S satisfying, where
defined, conditions (QC1) to (QC3). We denote by Qp the set of partial allocations.

Since the diversification constraint is fundamental in this approach, we define

R(x,a) = {y ∈ X |∃s : Q(x,a,s) = y} (5.2)

the set of resources where the atom (x,a) is allocated. Notice that |R(x,a)| ≤ σ for
all (x,a) ∈ A and the cardinality of this set is exactly σ when all the copies of the
atoms are allocated.

To each allocation Q we can associate a matrix W . More generally, given any
partial allocation Q ∈Qp, we put

W (Q)xy = |Q−1(y)∩Sx|. (5.3)

W (Q)xy =Wxy is the total amount of data that x is allocating into y under the alloca-
tion Q; when not necessary, we avoid to indicate the dependency on Q.

The allocation problem can be reformulated in terms of the matrix W .



96 CHAPTER 5. A DIVERSIFIED ALLOCATION ALGORITHM

Proposition 5.2.1. The allocation problem is solvable if and only if there exists a
matrix W ∈ RX×X satisfying the following properties:

(P1) Wxy ≥ 0 for all x,y and Wxy = 0 whenever (x,y) ̸∈ E .

(P2) Wxy ≤ αx for all x,y.

(P3) ∑
y∈X

Wxy = σαx for all x ∈ X .

(P4) ∑
x∈X

Wxy ≤ βy for all y ∈ X .

Proof. Only if: Suppose the allocation problem is solvable and that Q is an allocation.
Consider W =W (Q) as defined in (5.3). Property (P1) immediately follows from
(QC1). Since two copies of the same atom cannot be allocated in the same resource,
as a consequence of (QC3), it follows that

Wxy = |Q−1(y)∩Sx| ≤ αx

This proves (P2). Regarding (P3), we have that

∑
y∈X

Wxy = ∑
y∈X

|Q−1(y)∩Sx|= σαx.

Finally, (P4) is a straightforward consequence of (QC2).

If: For a fixed unit x ∈ X , order the resources in Nx as y1, . . . ,ym and suppose,
without loss of generality, that the atoms of Sx are numbered from 0 to σαx in

groups of αx. Define Qx : Sx →X by putting Qx(a) = yk if a ∈
[

k−1
∑
j=1

Wxy j ,
k
∑
j=1

Wxy j

[
.

Now define Q : S →X by putting Q(x,a,s) = Qx(a+(s−1)αx). By construction
property (QC1) holds. (QC2) follows from

|Q−1(y)|= ∑
x∈X

Q−1
x (y)≤ ∑

x∈X
Wxy ≤ βy

where the last inequality follows from (P4). Finally, notice that a+(s−1)αx and
a+(s′−1)αx differ of at least αx. Since Wxy ≤ αx, necessarily, Qx(a+(s−1)αx) ̸=
Qx(A+(s′−1)αx). This yields (C3).
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A matrix W satisfying properties (P1) to (P4) will be called a state of the system.
The set of states is a simplex which will be denoted by W . It will be useful to
consider matrices W satisfying properties (P1), (P2), (P4), and the following relation

(P3’) ∑
y∈X

Wxy ≤ σαx for all x ∈ X .

replacing (P3). They correspond to situations where not all data have been allocated
and they are called partial states; with the symbol Wp we denote their family.

5.2.1 Study of the allocation conditions

An important aspect to study is the allocation condition, i.e., understanding which
relation exists between the quantity to be allocated and the available storage.
The allocation condition proven in Chapter 2

∑
x∈D

αx ≤ ∑
y∈N(D)

βy for all D ⊆X (5.4)

does not hold in its generalization

σ ∑
x∈D

αx ≤ ∑
y∈N(D)

βy for all D ⊆X

in this case with multiple copies. The reason is the diversification constraint that
forbid the allocation of different copies of the same atom in the same resource.
Furthermore, due to the diversification constraint it is not possible to build an
allocation that correspond to a matching therefore we cannot use the same argument
of Theorem 2.1.1. To be more specific, consider a graph P = (S ×B,EP) where
((x,a,s),(y,b))∈EP iff (x,y)∈E . Given an allocation Q∈Q, build a map Q̃ :S →B
such that Q̃(x,a,s) = (Q(x,a,s),b) for all x ∈ X and for all atoms and copies a and
s. The induced matching is given by

M=
⋃

x∈X
{((x,a,s),(y,b) ∈ S ×B|(y,b) = Q̃(x,a,s)}.

Unfortunately, given a matching, it is not possible to associate it to an allocation
because it can happen that Q̃(x,a,s) = (y,b) and Q̃(x,a,s′) = (y,b′).
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This is the reason why we can only formulate a conjecture on the allocation
condition.

Conjecture 5.2.2. Given (G,α,β ), there exists an allocation iff

σ ∑
x∈D

αx ≤ ∑
y∈N(D)

min

{
βy, ∑

x∈N−(y)
αx

}
∀D ⊆X . (5.5)

Remark 5.2.3. Notice that this condition include σ ≤ |Nx| for all x which is a
fundamental hypothesis for the allocation to guarantee the diversification.

The following example shows a case where the generalization of condition (5.4)
is not enough to guarantee the allocation while it satisfies condition (5.5).

Example 5.2.4. Consider the following graph and for simplicity suppose that there
are two users who are a sources of data (indicated with U = {1,2}) and five shared
resources R = {3,4,5,6,7}. Suppose that α1 = 2 and α2 = 1 and fix σ = 3; suppose
moreover that βi = 2 for i = 3, . . . ,7. The underlying graph is in the following figure.

α1 = 2
σ = 3

β5 = 2 α2 = 1
σ = 3

β7 = 2β3 = 2

β4 = 2 β6 = 2

Fig. 5.1 Underlying graph of Example 5.2.4

Condition (5.4) holds:

σ ∑
x∈U

αx = 9 ≤ 10 = ∑
y∈R

βy

σα1 = 6 = ∑
y∈N(1)

βy

σα2 = 3 ≤ 6 = ∑
y∈N(2)

βy
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but one of the two users cannot complete the allocation. In fact, if D =U

σ ∑
x∈U

αx = 9 and ∑
y∈N(D)

min

{
βy, ∑

x∈N−(y)
αx

}
= 8.

The conjecture is motivated by the fact that, given condition (5.5), it is possible
to find an allocation state in a particular case. The following example is explicative.

Example 5.2.5. Consider to have a complete underlying graph and suppose αx = a
and βx = b for all x ∈ X . In this case, the condition reduce to

σa ≤ b and σ ≤ n−1 (5.6)

To find an allocation state it is sufficient to take an n× n circulant matrix on the
vector

[0,a, . . . ,a︸ ︷︷ ︸
σ

,0, . . . ,0︸ ︷︷ ︸
n−σ−1

].

Notice that it is necessary to set the first entrance to be zero to guarantee that no users
allocate into themselves. The matrix that we obtain guarantee the diversification
since each user allocate exactly σ copies and it also satisfy the storage limitation
because there are exactly σa atoms in each resource. Clearly any permutation of
this matrix that guarantees that Wxx = 0 for all x ∈ X is a possible allocation state.

5.2.2 Feasible allocation states

Example 5.2.5 suggest that it is possible to find an allocation state at least in the
complete case. Here, we show that there are other solutions for regular graphs.
Consider an undirected regular graph G = (X ,E) with degree s ≥ σ and adjacency
matrix A, and suppose αx = a and βx = b for all x ∈ X . The diffused allocation state
defined in Chapter 2, if s divides a

Wxy =
a
s

Axy
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is still a desirable allocation state when the fragmentation of data is needed. On the
other hand, the matching allocation state

W ρ
xy =

{
σa ifρ(x) = y
0 otherwise

where ρ : X →X is a permutation without any fixed points, is not a possible state
because of the diversification constraint. However, it seem reasonable to consider
the following generalization

W ρ
xy =

{
a if ρ(x) = yi, i = 1, . . . ,σ
0 otherwise

where ρ : X →X σ assign to each user a σ -upla of resources. In this allocation state
each user choose exactly σ resources and it is the most aggregate state we can obtain
to ensure the diversification. The allocation state given in Example 5.2.5 is of this
type.

5.3 The game theoretic structure

Given a (partial) allocation state W ∈Wp, we use the symbols Wx. and W.y to indicate,
respectively, the row x and the column y of the matrix W . The payoff for unit x in
the state W is defined by a function Ux : Wp → R such that

Ux(W ) = fx(W.x)+ ∑
y∈Nx

gy(Wy.)

following the description in Chapter 2. The first addend considers the amount of
data that x has already allocated. The second addend instead takes into consideration
the resource x is using and its congestion situation. Clearly, the fragmentation of the
allocated data depends on the functionals. Possible utility functions are described in
Section 2.2 of Chapter 2.

A Nash equilibrium is any allocation state W ∈Wp such that for every x ∈ X
and for every W ′ ∈Wp such that Wxy =W ′

xy for every x ̸= x̄ and for every y, it holds

Ux(W )≥Ux(W ′).
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In words, in a Nash equilibrium, a unit x has no convenience to change its allocation
moving data from one resource to another which is available. Following the analysis
in [1] as in Chapter 2, we can write the functional

Ψ(W ) = ∑
x∈X

fx(Wx·)+ ∑
y∈X

gy(W·y)

that represent the discrete potential function of the game. The characteristics and
properties of the potential and utility functions are widely described in Sections 2.1.2
and 2.2 of Chapter 2. Clearly the diversification do not affect the analysis and the
description of the utility since it depends on the allocated quantities.

5.3.1 Existence of Nash Equilibria

The model above can be interpreted as a population game [2] where the population
consists of atoms of different types as many as the units X . To every unit x ∈ X we
associate a continuum of atoms of type x consisting of σ distinct intervals of size
αx who have to split themselves into the available resources y ∈ Nx satisfying the
constraints (QC2) and (QC3). The population games considered in the literature do
not present the constraints (P2) and (P4). As we will see this addiction is not entirely
innocuous; in particular it makes some of the classical results [2] not automatically
extendable to our context. We detail this below.

Define the function Ψ : W → R:

Ψ(W ) = ∑
x∈X

∫ Wx

0
fx(s)ds+ ∑

y∈X

Wy∫
0

gy(s)ds (5.7)

and notice that
∂Ψ

∂Wxy
= fx(Wx·)+gy(W·y) (5.8)

It follows that the game we are considering is a potential game. In classical population
game theory, Nash equilibria coincide with the Kuhn-Tucker points of Ψ with respect
to the constraints (P1) to (P4), namely state W ∈W such that there exist coefficients
(Kuhn-Tucker weights) µ ′

xy, µ ′′
xy for x,y ∈ E with (x,y) ∈ X , µ ′

x, µ ′′
x for x ∈ X
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satisfying the relations

µ ′
xy ≥ 0, µ ′

xyWxy = 0

µ ′′
xy ≥ 0, µ ′′

xy(Wxy −αx) = 0

µ ′′
y ≥ 0, µ ′′

y (∑x(Wxy −βy)) = 0

(5.9)

(for all x,y ∈ X such that (x,y) ∈ E and for y ∈ X ) and such that the auxiliary
function

Ψ̃=Ψ+∑
x,y

µ
′
xyWxy−∑

x,y
µ
′′
xy(Wxy−αx)−∑

x
µ
′
x(∑

y
Wxy−σαx)−∑

y
µ
′′
y (∑

x
(Wxy−βy))

(5.10)
is stationary in W , namely ∇Ψ̃(W ) = 0.

Proposition 5.3.1. Kuhn-Tucker points for Ψ are Nash equilibria for the game. In
particular, local maxima of Ψ are Nash equilibria.

Proof. Suppose W is a Kuhn-Tucker point with corresponding weights µ ′
xy, µ ′′

xy, µ ′
x,

µ ′′
x . Stationarity condition yields

Ux(W ) =−∑
y

µ
′
xy +∑

y
µ
′′
xy +µ

′
x +∑

y
µ
′′
y (5.11)

for all x,y such that (x,y) ∈ E . To prove that W is Nash, consider a pair x,y1 such
that Wxy1 > 0. Consider than another state W ′ such that W ′

y2
< βy2 and W ′

xy2
< αx for

some y2 in the neighborhood of x. From (5.11) using the conditions (5.9), we obtain

Ux(W ) =− ∑
y̸=y1

µ
′
xy +∑

y
µ
′′
xy +µ

′
x +∑

y
µ
′′
y

Ux(W ′) =−∑
y

µ
′
xy + ∑

y̸=y2

µ
′′
xy +µ

′
x + ∑

y̸=y2

µ
′′
y

Since µ ′′
xy2

, µ ′′
y1

, µ ′
xy1

are non-negative terms, this immediately implies that Ux(W )≥
Ux(W ′). Thus this shows that W is Nash equilibria. Last assertion simply follows
from the fact that local maxima are Kuhn-Tucker points.

In the special case when fx(Wx) = 0, our population game is a congestion game.
Notice that in this case the payoff Ux(W ) does not explicitly depend on x and its
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dependence on W is exclusively through Wy. Also the potential function Ψ is only
function of the variables Wy as y varies in X . If we define φ : ∏

y∈X
[0,βy]→ R by

φ(v) = ∑
y∈X

vy∫
0

gy(s)ds (5.12)

and we put v : W → R by v(W )y = Wy, we have that Ψ(W ) = φ(v(W )). Now, if
we suppose that gy(s) is a strict increasing C1 function, we have that φ is strictly
convex so it possesses just one local maximum v0 which is also global. Being v(W )

linear, we thus have that Ψ is convex on W . However, in general the convexity is not
strict since the function v(W ) is many-to-one. To the global maximum v0 will thus
correspond, in general, an affine set of global maxima of Ψ. Notice that if W ∈W
is any global maximum of Ψ, then, Wy = v0

y for every resource y. This shows that
all these Nash equilibria are characterized by giving the same congestion levels on
the various resources; in other terms the only thing that can possibly change is the
way the units split their atoms among the resources. Of course convexity implies
that no other Kuhn-Tucker point for Ψ may exist. Even in this case, however, the set
of Nash equilibria of the underlying game is in general larger than the set of global
maxima. Clearly, in the case when also the aggregation term is present, also local
maxima and other stationary points can show up in the potential function.

5.4 The allocation algorithm

The allocation algorithm we are proposing is fully distributed and asynchronous and
is only based on communications between units, taking place along the links of the
graph G = (X ,E). It is based on the ideas of learning dynamics where, randomly,
units activate and modify their action (allocation state) in order to increase their
utility.

We now illustrate the details of our algorithm following the reasoning of Chapter
2. The functional state of the network at a certain time will be denoted by ξ ∈{0,1}X :
ξx = 1 means that the unit x is on. The times when units modify their functional
state (off to on or on to off) and the times when units in functional state on activate
are modeled as a family of independent Poisson clocks whose rates will be denoted
(for unit x), respectively, νon

x , ν
o f f
x , and νact

x . The functional state of the network as
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a function of time ξ (t) is thus a continuous time Markov process whose components
are independent Bernoulli processes.

We now describe the core of the algorithm, namely the rules under which acti-
vated units can modify their allocation state.

We start with some notation. Given a (possibly partial) allocation state W ∈Wp,
a functional state ξ ∈ {0,1}X , and an atom (x̄, ā) such that ξx̄ = 1, define:

W(x̄,ā)(W,ξ ) =

{
W ′ ∈Wp :

W ′
xy =Wxy,x ̸= x̄ or ξy = 0 or y ∈R(x̄,ā)

W ′x̄ ≥W x̄,W ′ ̸=W

}
(5.13)

Wx̄(W,ξ ) =
⋃

ā∈Ax

W(x̄,ā)(W,ξ ) (5.14)

Wx̄(W,ξ ) describes the possible partial allocation states obtainable from W by
modifications done by the unit x̄. Only the terms Wx̄y where y is on and free from
repetition of copies can be modified; the total amount of allocated data W x̄ can only
increase or remain equal. Since the sets Wx̄(W,ξ ) can in general be very large, it is
convenient to consider the possibility that the algorithm might use a smaller set of
actions where units either allocate new data or simply move data from one resource
to another one.

Given (W,ξ ) ∈Wp ×{0,1}X and an atom (x̄, ā), define

N(x̄,ā)(W,ξ ) =
{

y ∈ Nx : Wy < βy,ξy = 1,y /∈R(x̄,ā)
}

(5.15)

and
Nx̄(W,ξ ) =

⋃
a∈Ax

N(x̄,ā)(W,ξ ) (5.16)

the set of available neighbor resources for x̄ under the allocation state W and the
functional state ξ : those that are on and still have space available and guarantee the
diversification.

A family of sets Mx̄(W,ξ ) ⊆ Wx̄(W,ξ ), defined for each x̄ ∈ X and each
(W,ξ ) ∈Wp ×{0,1}X , is called admissible if

(i) W x̄ < σαx̄, y ∈ N(x̄,ā)(W,ξ ),⇒W ′ =W + ex̄y ∈Mx̄(W,ξ );
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(ii) Wx̄y′ > 0, ξy′ = 1, y∈R(x,a), y′′ ∈N(x̄,ā)(W,ξ ),⇒W ′ =W +
σ

∑
i=1

(ex̄y′′−ex̄y′)∈
Mx̄(W,ξ );

(iii) W ′ ∈Mx̄(W,ξ ) iff W ∈Mx̄(W ′,ξ ) for every W ∈W .

Conditions (i) and (ii) essentially asserts that when a unit has an available neighbor
resource not yet saturated, then Mx̄(W,ξ ) must incorporate the possibility to newly
allocate or transfer already allocated data into it; this hold for all the copies of the
atom. Condition (iii) instead simply says that when the functional state does not
change and we are in an allocation state, any transformation can be reversed.
Examples of admissible families Mx̄(W,ξ ) are the following

1. Mx̄(W,ξ ) =Wx̄(W,ξ )

2. Mx̄(W,ξ ) = {W ′ ∈Wx̄(W,ξ ) : ∃y,∃n W ′ = W + nex̄y)}∪{W ′ ∈Wx̄(W,ξ ) :
∃y′,y′′,∃n W ′ =W +n(ex̄y′′ − ex̄y′)}

3. Mx̄(W,ξ ) = {W ′ ∈Wx̄(W,ξ ) : ∃yi, i = 1, . . . ,σ W ′ =W +∑
σ
i=1 exyi}∪{W ′ ∈

Wx̄(W,ξ ) : ∃y′i,∃y′′i , i = 1, . . . ,σ W ′ =W +∑
σ
i=1(exy′′i

− exy′i
)}

In the second case, modifications allowed are those where a unit either allocate a
certain amount of new data into a single resource or it moves data from one resource
to another one. The third case allow the user to allocate or move all the copies of an
atom at the same time.

Given an admissible family Mx̄(W,ξ ), we now define a Gibbs measure on it as
follows. Given a parameter γ > 0, put

Z(W,ξ )
x̄ (γ) = ∑W̃∈Mx̄(W,ξ ) eγUx̄(W̃ )

Z(W,W ′,ξ )
x̄ (γ) = max

{
Z(W,ξ )

x̄ (γ),Z(W ′,ξ )
x̄ (γ)

} (5.17)

Now define, for W ′ ∈Mx̄(W,ξ ),

P(W,ξ )
x̄ (W ′) =


eγUx̄(W

′)

Z(W,ξ )
x̄ (γ)

, if ||W ||< ||W ′||
eγUx̄(W

′)

Z(W,W ′,ξ )
x̄ (γ)

, if ||W ||= ||W ′||
(5.18)
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where ||W ||= ∑xyWxy, and complete it to a probability by putting

P(W,ξ )
x̄ (W ) = 1− ∑

W ′∈Mx̄(W,ξ )

P(W,ξ )
x̄ (W ′)

The algorithm is completely determined by the choice of the admissible family
Mx̄(W,ξ ) and of the probabilities (5.18). If unit x̄ activates at time t, the systems is
in partial allocation state W (t), and in functional state ξ (t), it will jump to the new
partial allocation state W ′ with probabilities given by

P(W (t+) =W ′) = P(W (t),ξ (t))
x̄ (W ′), W ′ ∈Mx̄(W (t),ξ (t)) (5.19)

If unit x̄ chooses a W ′ such that ||W ′|| > ||W || we say that it makes an allocation
move, otherwise, if ||W ′||= ||W ||, we talk of a distribution move.

5.4.1 Analysis of the algorithm

The nice convergence properties of the original algorithm cannot be obtained in this
model with the same reasoning of Chapter 2. The impossibility to prove those results
depends on the diversification constraint that invalidate Lemma 2.3.1.

Now, assume we have fixed a quadruple (G,α,β ,σ) satisfying the existence
condition (2.2), an admissible family of sets Mx̄(W,ξ ) and we consider the allocation
process W (t) described by (2.19) with any possible initial condition W (0).

By the way it has been defined, the process W (t) is Markovian conditioned to
the functional state process ξ (t). If we consider the augmented process (W (t),ξ (t)),
this is Markovian and its only non zero transition rates are described below:

Λ(W,ξ ),(W,ξ ′) =

{
νon

x̄ ifξx̄ = 0, ξ ′
x̄ = 1, ξx = ξ ′

x∀x ̸= x̄

ν
o f f
x̄ ifξx̄ = 1, ξ ′

x̄ = 0, ξx = ξ ′
x∀x ̸= x̄

Λ(W,ξ ),(W ′,ξ ) = νact
x̄ P(W,ξ )

x̄ (W ′) ifξx̄ = 1,W ′ ∈ Nx̄(W,ξ )

(5.20)

We now introduce a graph on Wp that will be denoted by Lp: an edge (W,W ′)
is present in Lp if and only if W ′ ∈Mx̄(W,1). Notice that, if νact

x̄ > 0 for every x̄,
this can be equivalently described as Λ(W,1),(W ′,1) > 0. The graph Lp thus describes
the possible jumps of the process W (t) conditioned to the fact that all resources are



5.4. THE ALLOCATION ALGORITHM 107

in functional state on. We want to stress the fact that the graph Lp depends on the
triple (G,α,β ) as well on the choice of the admissible family Mx̄(W,1) but not on
the particular choice of the functional Ψ or of the utility functions Ux̄.

Our strategy, in order to prove our first claim, will be to show that from any
element W ∈Wp there is a path in Lp to some element W ′ ∈W .

Given W ∈Wp we define the following subsets of units

X f (W ) := {x ∈ X |W x = σαx},

X sat(W ) := {x ∈ X \X f (W ) | ̸ ∃y ∈ Nx s.t Wy < βy}

Units in X f (W ) are called fully allocated: these units have completed the allocation
of their data under the state W . Units in X sat(W ) are called saturated: they have
not yet completed their allocation, however, under the current state W , they can not
make any action, neither allocate, nor distribute.

Finally, define

Wsat
p := {W ∈Wp \W | X = X f (W )∪X sat(W )}

It is clear that from any W ∈ Wp \Wsat
p , there exists units that can make either

an allocation or a distribution move. Instead, if we are in a state W ∈Wsat
p , there

are units that are not fully allocated and all these units con not make any move.
The only units that can possibly make a move are the fully allocated ones. Notice
that, because of condition (2.2), for sure there exist resources y such that Wy < βy

and these resources are indeed exclusively connected to fully allocated units. The
key point is to show that in a finite number of distribution moves, performed by
fully allocated units, it is always possible to move some data atoms from resources
connected to saturated units to resources with available space: this will then make
possible a further allocation move.

For any fixed W ∈ Wp, we can consider the following graph structure on X
thought as set of resources: HW = (A,EW ). Given y1,y2 ∈ X , there is an edge from
y1 to y2 if and only if there exists (x,a) ∈ A for which

y1 ∈R(x,a), y2 ∈ Nx \R(x,a).
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The edge from y1 to y2 will be indicated with the symbol y1 →(x,a) y2 (to also recall
the atom (x,a) involved). The presence of the edge means that the two resources y1

and y2 are in the neighborhood of a common unit x that is using y1 under W . This
indicates that x can in principle move some copies of its data currently stored in y1

into resource y2 if this last one is available.

As one can see, most of the feature used in Chapter 2 can be defined in this case
but we cannot riformulate Lemma 2.3.1. What is not clear here is that even though
there are available resources with Wy < βy, there is no guarantee that such resources
satisfy the diversification constraint. This problem is surely related to the absence of
an allocation condition that was instead given and used in the original case and that
is here only conjectured. Notice now that the existence of a sequence as in Lemma
2.3.1 is fundamental to guarantee the allocation and distribution moves therefore the
convergence cannot be proven. On the other hand, in Chapter 6, some simulations
validate the guess that the algorithm reaches a Nash Equilibrium also in this case of
multiple copies.

5.5 Conclusions

In this chapter, we present the extension of our allocation algorithm to a case with
multiple copies of the back up data. The interest on this problem comes from the
realistic assumption that users may want to allocate more copies of the backup data
to increase their security. Therefore, we describe the generalized model including a
new parameter σ indicating the number of copies to be stored for each data. For this
new model we conjectured an allocation condition motivated by Example 5.2.4 and
prove the existence of Nash equilibra.

Future analysis should include, firstly, the proof that the allocation condition is
the one proposed in Conjecture 5.2.2 and to give a proper characterization of the
Nash equilibria. Moreover, the convergence properties are not easy to prove because
of the diversification constraint. Therefore a deep analysis in this direction is not
only needed but also fundamental to make our algorithm more interesting, general
and valuable.
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Chapter 6

Simulations

6.1 Introduction

In this section we present a wide set of simulations that validate the theoretical
analysis of all the proposed variations. We analyze the structure of the asymptotic
Nash configuration reached and the effect of the variations of the parameters in
the utility function. The algorithms are tested for their convergence properties
and evaluated through some performance indices measuring the computational and
topological complexity of the solution found. We study some particular cases and
show many plots. Moreover, we compute a number of parameters to measure the
performance as, for instance, the satisfaction level of the agents, the average in
and out degree and the symmetry of the final state of the system; nonetheless, we
compute also the distance from the optimum, the number of moves per each atom
and the distance from the full allocation.

We aim to show that the algorithm is feasible for practical implementation and
that it has good performance and scaling properties. Example presented are admit-
tedly simple: our goal here is not to work out codes with optimized performance,
neither to present exhaustive sets of simulations.

In the next section we describe the parameters that we need in our evaluation and
we explain the basic assumption made for the following simulations. The remaining
sections follow the structure of this thesis, starting from the original algorithm,
through the variant with reciprocity to conclude with the multiple copies model.
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6.1.1 Preliminaries

In this section we describe in details the calculated parameters that measure the
performance. We present all the parameter at once but depending on the case we will
show only the ones needed.

Since the agents activates as a family of independent Poisson clocks, we will as-
sume that νx = ναx for some ν > 0, namely that units activation rates is proportional
to the amount of data they need to back up.

The number of units is denoted by n and assumed to be even. Most of our simula-
tions are for n = 50 but we have also studied scalability issues by considering higher
numbers of agents. We have considered two possible interconnection topologies:
the complete graph and a random regular graph of degree 10 randomly constructed
according to the classical configuration model.

For all examples, the performance of the algorithm will be analyzed considering
the following parameters computed, in a Montecarlo style, by averaging over 10
running of the algorithm.

• Allocation complexity: Moving data from one resource to another one is an
expensive task which must be carefully monitored in real applications. To
this aim, we have introduced the index νmoves which computes the number of
allocation or distribution moves per piece of data throughout the dynamics. In
formula, if mi is the total number of moves performed by agent i during the
run of the algorithm, we put

νmoves =
1
n ∑

x∈X

mi

αi
.

• Level of satisfaction: In some cases we will divide the resource in two subsets
X1 and X2 depending on their reliability (we suppose that one of the two subset
is more trustworthy). We define the mean and the variance of the satisfaction
level as

Λx =

∑
y

W ∞
xy

αx
λy

λx

Λ̄ :=
1
n ∑

x∈X
∑

y∈Nx

W ∞
xy

αx
λy,
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Λvar :=
1
n ∑

x∈X

(
∑

y∈X

W ∞
xy

αx
λy − Λ̄

)2

If λ1 and λ2 are taken to be the probability that if contacted at a random time
the resource is available to give access to the stored data, Λ̄ can be interpreted
as the probability that a piece of data can be recovered when requested at some
random time.

• Number of unsatisfied users: let

nunsat =
|x ∈ X : Λx < 1|

|X |

be the fraction of unsatisfied user with respect to the mutual satisfaction level.
This parameter is interesting especially in the heterogeneous case to understand
the behavior of the algorithm.

• Average congestion: The presence of the congestion term in the utility func-
tion should insure that all resources with the same reliability should in principle
be used equally. We measure the mean and variance of the congestion level of
resources in Xi by

C̄i :=
1

nβ
∑

y∈Xi

W ∞
y ,

Cvar :=
1
n ∑

y∈Xi

(
β
−1W ∞

y −C̄
)2

• Topological Complexity: We consider the in and out mean degrees measuring
the topological complexity of the subgraph consisting of the edges (x,y) for
which W ∞

xy > 0:

d+ :=
1
n ∑

x∈X
∑

y∈X
1{Wxy>0},

d−
i :=

2
n ∑

x∈X
∑

y∈Xi

1{Wxy>0}, i = 1,2

• Distance from optimum: ψ = Ψ(W T )

Ψopt
where Ψopt is the maximum of the

potential. This allows to measure how the final allocation state W (T ) is far
from a Nash configuration maximizing the potential Ψ. We will use the exact
value of Ψopt in those cases for which the optimum Nash is explicitly known.
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In some cases we will also present a plot of the function ψ(t) = Ψ(W (t))
Ψopt

, in
this case for a single running of the algorithm.

• Symmetry: we study how far is the final system from being a symmetric
matrix computing the parameter

ζ =
∥∥W −W T∥∥

∞

This parameter is meaningful in the case with reciprocity because it indicates
the mutual behavior between users.

• Distance from Full Allocation:

∆ = ∑
x∈X

αx − ∑
x,y∈X

Wxy

counts the quantity of atoms not yet allocated. If the allocation is complete,
this parameter is 0.

We assume the admissible family Mx̄(W,ξ ) to be of type

Mx̄(W,ξ ) = {W ′ ∈Wx̄(W,ξ ) : ∃y,∃n ∈ Q W ′ =W +nex̄y)}∪
{W ′ ∈Wx̄(W,ξ ) : ∃y′,y′′,∃n ∈ Q W ′ =W +n(ex̄y′′ − ex̄y′)}

where Q ⊆ N and 1 ∈ Q, i.e., the modifications allowed are those where a unit either
allocate or move a number of data constrained in a set Q. Most of the examples are
for Q = {1}: just one data is allocated or moved each time.

On the basis of our theoretical analysis, the algorithm, in the limit when t →+∞

and the inverse noisy parameter γ →+∞, is known to converge to the optimum. In
practical implementations, a typical choice in these cases is to take the parameter γ ,
time-varying and diverging to +∞. The tuning of the divergence rate is known to be
critical to obtain good results. Here we have chosen

γ(t +1) = γ(t)+
1

n∗1000

Most of the time, we suppose the units to be always on (otherwise things get simply
slowed down). The time horizon is fixed T = 5∗∑x∈X αx: in this way a unit x will
activate, on average, a number of times equal to 5 times the number of data it needs
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to allocate. As we will see, this time range is sufficient for the allocation to be
completed and to get close to the optimum (this has been checked in those cases
when the optimum is analytically known).

6.2 The network cloud storage model

In this section, we present some numerical results to validate the theoretical approach
discussed in Chapter 2.

All the examples in this section are for the case when the functional has the form

Ux(W ) =Call
∑

y∈X
Wxy +Cagg

∑
y∈X

W 2
xy − ∑

y∈N−
x

Ccon
y (Wy)

2, (6.1)

but the last one where instead we consider the form

Ux(W ) =Call
∑
y

Wxy +Cagg
∑

y∈X
W 2

xy − ∑
y∈N−

x

Ccon
y |W·y|H . (6.2)

We always take

Call = 3(||α||∞|Cagg|+ ||β ||∞Ccon). (6.3)

This choice is motivated by the considerations in Chapter 2. We assume that Ccon
y =

Ccon for all units and we consider both the case when the aggregation parameter Cagg

is positive or negative.

We now present a number of simulations for the case when the functional has
the form defined in (6.1). We first consider the case when Q = {1}: just one data
is allocated or moved each time a unit activates. We always take Ccon = 1 and Call

chosen according to (6.3) and different values for Cagg. The first example is the same
presented in Chapter 2.

Example 6.2.1. Consider to have n = 10 users on a complete graph such that
αx = a = 45 and βx = b = 50 for every unit x. We consider the cases: Cagg =

−7,−1,1/2,3 . We already showed the final state of the system reached by the
algorithm in Example 2.3.9. We plot in Figure 6.1 the time evolution of the potentials
and we confront it with the optimal potential represented by the red line. For
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Cagg = 3 a matching allocation state is reached and it is a maximum of Ψ in this
case. For Cagg = −7 the solution is also very close to the maximum that is the
diffused allocation state. For Cagg = 1/2,−1, the presence of Nash equilibria that
are not maxima of Ψ slows down the dynamics and the algorithm does not reach the
maximum at time T (this particularly evident for the case Cagg = 1/2). Increasing
in this case the time horizon to T = 20∗∑α , the final state of the system gets quite
close to the maximum as confirmed by the plots in Figure 6.2. The following table
shows the performance parameters in the Montecarlo simulation for the usual T .

Table 6.1 Performance parameters for n = 10

Cagg =−7 Cagg =−1 Cagg = 1/2 Cagg = 3
d 9 8.7400 6.6200 1
ψ 1 0.9944 0.9156 1
∆ 0 0 0 0
νmoves 3.1669 4.9389 4.9331 3.2449

From now on we focus on the cases Cagg = −7,3, Ccon = 1 and Call chosen
according to (6.3), showing that reasonably good properties are maintained for larger
communities and different topologies.

Example 6.2.2. Consider to have n= 50 users on a complete graph and on a regular
graph of degree 10 such that αx = a = 45 and βx = b = 50 for every unit x.

Table 6.2 Performance parameters for n = 50

(a) Cagg = 3

Complete Regular
d 1.2400 1.2280
ψ 0.9794 0.9872
∆ 0 0
νmoves 1.8238 2.4538

(b) Cagg =−7

Complete Regular
d 45 10
ψ 1 1
∆ 0 0
νmoves 1.3746 1.2898
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Fig. 6.1 Time evolution of the Potential
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(d) Cagg = 3

Fig. 6.2 Evolution of the Potential with T = 20∗∑x∈X αx
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While a matching allocation state is not reached when Cagg = 3, the value of
the average degree shows that the solution is quite concentrated with most of units
allocating in just one resource. Instead, for Cagg =−7 we have reached an optimum
diffused allocation state. In Figure 6.3 we show how the aggregation parameter
influence the allocation: in Figure 6.3a it is shown the underlying graph in the
regular case while in Figure 6.3b it is represented the final allocation state.

The next example shows how the presence of heterogeneous resources does not
alter much the performance of the algorithm

Example 6.2.3. Consider to have n= 50 users on a complete graph and on a regular
graph of degree 10 such that αx = a = 43 for every x. Assume that half of the units
have βx = 40 and half or them instead βx = 50. Notice that, in this case, for the
regular graph topology, there is no a-priori guarantee that allocation is feasible.
Simulations show however that allocation is reached in all cases.

Table 6.3 Performance parameters for n = 50, different storage capabilities

(a) Cagg = 3

Complete Regular
d 2.0040 2.2760
∆ 0 0
νmoves 2.1540 4.1273

(b) Cagg =−7

Complete Regular
d 42.628 10
∆ 0 0
νmoves 1.9754 1.2862

In the following example we consider larger families of units connected through
a regular graph of degree 10. Numerical results show the good scalability properties
of the algorithm.

Example 6.2.4. Suppose to have n = 100,200,300 users on a regular graph of
degree 10 with αx = a = 45 and βx = b = 50. The parameters table is presented in
the next page.

Next example consider the case when allocations and distributions are allowed
with different granularity Q.
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Fig. 6.3 Underlying graph for n = 50 users, regular with degree 10

(a) Underlying Network

(b) Used Edges
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Table 6.4 Performance parameters for n = 100,200,300

(a) Cagg =−7

n = 100 n = 200 n = 300
d 10 10 10
ψ 1 1 1
∆ 0 0 0
νmoves 1.2535 1.2832 1.2897

(b) Cagg = 3

n = 100 n = 200 n = 300
d 1.3980 1.4040 1.4017
ψ 0.9751 0.9753 0.9748
∆ 0 0 0
νmoves 2.0125 1.6346 1.5114

Example 6.2.5. Consider to have n = 10 users on a complete graph such that αx =

a = 45 and βx = b = 50 for every unit x. We assume that units can allocate or move
each time a quantity of data belonging to either Q1 = {1,5,10} or Q2 = {1,25,45}.
We also report the case Q0 = {1} for the sake of comparison.

Table 6.5 Performance parameters for n = 10, different granularity

(a) Cagg =−7

Q0 Q1 Q2
d 9 9 3.8500
ψ 1 0.9999 0.8902
∆ 0 0 0
νmoves 3.1669 0.2311 0.1767

(b) Cagg = 3

Q0 Q1 Q2
d 1 1.0100 1.0100
ψ 1 0.9996 0.9999
∆ 0 0 0
νmoves 3.2449 0.1224 0.0229

As expected, the possibility to allocate at one time larger sets of data drastically
reduces the number of allocation and distribution moves and speeds up the algorithm.
Notice however that in one case, using the set Q2, the algorithm does not reach the
maximum. This phenomenon is probably due to the fact that allocating large set
of data at once can lead to allocation states quite far from the optimum and thus
require longer time to converge. This says that the choice of the set Q is likely to
play a crucial role in order to optimize the speed of convergence of the algorithm-

Finally, the last example is for the objective functional with the alternative
congestion term. Therefore, the utility for each user x ∈ X is of the form (6.2).

Example 6.2.6. Consider to have n = 50 users on a complete graph and on regular
graph of degree 10 such that αx = a = 45 and βx = b = 50 for every unit x. We
take Ccon = 1 and Call chosen according to (6.3) while we take different values for
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Cagg. As expected, in this case, varying the aggregation parameter Cagg, we obtain
solutions with a different degree of fragmentation.

Table 6.6 Performance parameters for n = 50, alternative congestion term

(a) Regular graph

Cagg = 0 Cagg =−1/2 Cagg =−2 Cagg =−5
d 4.7680 8.2849 9.8240 10
∆ 0 0 0 0
νmoves 4.8604 4.4729 4.3748 5

(b) Complete graph

Cagg =−2 Cagg =−10 Cagg =−20 Cagg =−100
d 13.9640 21.6400 23 45
∆ 0 0 0 0
νmoves 4.7415 4.9951 5 1.3547

This is particularly evident in the case of a complete graph. The choice of the
topology and of the functional parameters can be seen, in this case, as alternative or
complementary ways to prescribe the complexity of the allocation in terms of links
used.

6.3 Reliability and reciprocity

In this section, we consider the reciprocity algorithm and the reliability learning
process of Chapter 3.

The allocation constant is fixed

Call = 3(||α||∞|Cagg|+ ||β ||∞Ccon).

Since in this approach the reliability of the users is fundamental, we include this
parameter in the utility function that it is now defined as

Ux(W ) =Call
∑

y∈X
Wxy +Cagg

∑
y∈X

W 2
xy − ∑

y∈N−
x

Ccon
y (Wy)

2,
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with Ccon
y = 1−λy. This choice is motivated by the fact that we want users to prefer

the most reliable resources even if it disadvantage the congestion.

The first example is to show how the reliability parameter influence the allocation.
For this example, we consider the agents to be divided in two families X1 and X2 of
equal cardinality depending on their reliability. In this part we do not include the
reciprocity process but we consider the learning algorithm.

Example 6.3.1. Suppose there are n = 10 users divided in two families X1 with
reliability λ1 = 0.5 and X2 with λ2 = 0.8 (we call the families bad and good, respec-
tively). Each agent has αx = a = 45 and βx = b = 50. We choose Ccon

y = 1−λy and
Call fixed according to (6.3) while we let vary Cagg. The following table shows the
performance parameters.

Table 6.7 Performance parameters for n=10 with different reliabilities

Cagg =3 Cagg =−1 Cagg =−7
νmoves 1.9297 1.5151 1.0329
d 1.6900 8.9500 9
C̄1 0.8652 0.8000 0.8000
C̄2 0.9348 1.0000 1.0000
C̄var 0.0322 0.0100 0.0100
C̄ 0.9000 0.9000 0.9000
∆ 0 0 0

As expected, more reliable resources are used more than the bad ones. In terms of
performance, the final allocations states are quite similar to the classic case. Figure
6.4 shows the learning process through time. In particular it shows the average
reliability learned by the users (starting from λy = 1 for all y ∈ X ) during the entire
allocation algorithm.

6.3.1 The algorithm with reciprocity

The examples in this section include the reciprocity process. Recall that we analyzed,
in Chapter 3, three different approaches to define the probability of acceptance.
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Fig. 6.4 Learning process

1. (Number of refusal) This take into consideration the number of times the
user who wants to allocate have refused to store the data of the resource. The
probability of acceptance in this case is defines as

ρ(y,x) = min
{

η
y
x +λxWyx

λy(Wxy +1)
,1
}

(6.4)

where η
y
x is the estimation that the user will accept the storage in future.

2. (Mutual behavior) Taking into consideration the mutual reliabilities and the
quantities allocate we set

ρ(y,x) = min
{

λx(Wyx +1)
λy(Wxy +1)

,1
}
. (6.5)

3. (Source/Resource) This evaluate the behavior of the users as resources with
respect to the rest of the neighbor; the probability is defined as

ρ(y,x) = δ
λxWyx

∑
x∈Ny

λxWyx
+(1−δ )

Wxy

∑
x∈Ny

Wxy
(6.6)

where δ ∈ [0,1] is a tuning parameter.
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In the following set of simulation we want to show how this reciprocity influences
the final allocation state as well as the behavior of the users. Moreover, we show how
this behavior varies depending on the probability of acceptance and that in certain
cases it is possible to exclude from the network a selfish user. By selfish user we
mean an agent that, as a resource always deny the allocation from the neighbors but
at the same time aims to complete his/her own.

Number of refusal.
We start with some example using the probability of acceptance (6.4). We first
present an example with n = 10 users and show the final states of the system. Later
we will show also some examples for higher numbers of players.

Example 6.3.2. Consider to have n= 10 users on a complete graph. Fix αx = a= 45
and βx = b = 50 for all x ∈ X and let Cagg = −7,−1,3. Suppose that there are
no selfish users. The reliability is λx = λ = 1. The following matrices represent a
sample of the final allocation states reached by the algorithm.

W3 =



0 0 0 0 0 45 0 0 0 0
0 0 45 0 0 0 0 0 0 0
0 45 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45 0
0 0 0 0 0 0 0 0 0 45

45 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 45 0 0
0 0 0 0 0 0 45 0 0 0
0 0 0 45 0 0 0 0 0 0
0 0 0 0 45 0 0 0 0 0





6.3. RELIABILITY AND RECIPROCITY 125

W−1 =



0 4 5 4 4 3 4 6 9 6
5 0 5 5 4 9 3 6 5 3
4 4 0 6 5 2 9 2 7 6
7 3 4 0 3 9 6 5 3 5
3 3 3 6 0 8 5 4 5 8
5 4 2 8 5 0 6 2 6 7
3 3 6 5 3 5 0 9 7 4
7 6 5 4 5 1 7 0 5 5
6 3 8 6 6 4 4 4 0 4
3 7 5 5 4 6 3 10 2 0



W−7 =



0 5 5 5 5 5 5 5 5 5
5 0 5 5 5 5 5 5 5 5
5 5 0 5 5 5 5 5 5 5
5 5 5 0 5 5 5 5 5 5
5 5 5 5 0 5 5 5 5 5
5 5 5 5 5 0 5 5 5 5
5 5 5 5 5 5 0 5 5 5
5 5 5 5 5 5 5 0 5 5
5 5 5 5 5 5 5 5 0 5
5 5 5 5 5 5 5 5 5 0


Even if the allocation state W3 is a perfect matching, the parameters shows that

it is not always the case. In the first column of the table we show also the parameter
of the algorithm without reciprocity (Cagg = 3, reported in the first column of the
table) to make a comparison.

Table 6.8 Performance parameters for n=10 with reciprocity

Cagg =3 Cagg =3 Cagg =−1 Cagg =−7
d 1.7400 1.9700 9 9
ζ 94.5000 53 0 0
ψ 0.9402 0.9349 1 1
∆ 0 0 0 0
νmoves 1.6862 1.6427 2.2749 1.0002
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Clearly, for the negative aggregation parameters the symmetry follows straightfor-
ward but for the positive value the algorithm with reciprocity is way more symmetric.

For the sake of completeness we also show an example with agents having a
certain probability to be on.

Example 6.3.3. Suppose there are n = 10 users with αx = 45, βx = 50 and λx = 0.8
for all x ∈ X . The congestion e allocation parameter are fixed and we vary the
aggregation parameter. The table shows the performance; the first column is for the
case with our reciprocity.

Table 6.9 Performance parameters for n=10 with reciprocity and reliability

Cagg =3 Cagg =3 Cagg =−1 Cagg =−7
d 1.5100 1.9400 9 9
ζ 94 51.8000 0 0
ψ 0.9478 0.9351 1 1
∆ 0 0 0 0
νmoves 1.7651 1.6447 2.5871 1.0053

As one can see, there are no substantial differences from this performance to in the
one with λx = 1 for all x ∈ X .

The following example is for higher number of agents and different topologies.

Example 6.3.4. Consider to have n= 50 users on a complete graph and on a regular
graph of degree 10. Fix αx = a = 45, βx = b = 50 and λx = λ = 1 for all x ∈ X .
Let Cagg =−7,3 and suppose that there are no selfish users. The following tables
(Tables 6.10a and 6.10b) show the parameters.

The following example shows how our reciprocity process discourage selfish
behaviors. With selfish we mean a user who always refuse the allocation of the other
players.

Example 6.3.5. Consider to have n= 10 users on a complete graph. Fix αx = a= 45
and βx = b = 50 for all x ∈X and let Cagg =−7,−1,3. The reliability is λx = λ = 1.
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Table 6.10 Performance parameters for n = 50 with reciprocity

(a) Complete case

3 -7
d 9.8620 45
ζ 93.2000 8
∆ 0 0
νmoves 1.9146 1.3115

(b) Regular case

3 -7
d 1.5900 10
ζ 83.2000 8.2000
∆ 0 0
νmoves 2.2485 1.2519

Suppose that user x = 3 is selfish. First, we show the final allocation states; on the
side we put the allocated quantities for each user.

W3 =



0 0 0 37 0 0 0 0 0 8
0 0 0 0 0 0 0 0 43 2
1 3 0 0 2 1 3 3 4 1

45 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 45 0 0
0 0 0 0 0 0 41 0 2 2
0 0 0 0 0 45 0 0 0 0
0 2 0 2 17 2 6 0 1 15
0 13 0 0 31 0 0 0 0 1
1 31 0 11 0 1 0 1 0 0



45
45
18
45
45
45
45
45
45
45

W−1 =



0 3 0 5 6 4 7 7 5 8
6 0 0 5 7 7 8 1 5 6
3 1 0 2 2 1 1 1 3 1
4 3 0 0 9 6 4 10 5 4
8 6 0 7 0 3 3 6 7 5
1 11 0 6 6 0 3 7 5 6
6 7 0 6 5 8 0 4 3 6
6 0 0 7 5 6 6 0 10 5
8 6 0 5 1 5 6 7 0 7
5 6 0 2 6 5 8 6 7 0



45
45
15
45
45
45
45
45
45
45
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W−7 =



0 5 0 3 6 6 5 7 6 7
7 0 0 7 5 6 4 6 5 5
1 3 0 2 2 2 2 2 3 2
5 6 0 0 8 5 5 5 5 6
3 6 0 5 0 7 6 7 5 6
6 5 0 5 7 0 5 3 7 7
6 4 0 6 4 7 0 6 8 4
6 7 0 4 7 5 5 0 6 5
6 5 0 5 6 5 6 6 0 6
6 5 0 7 4 5 8 7 3 0



45
45
19
45
45
45
45
45
45
45

Independently on the aggregation parameter, the allocation of user x = 3 is never
completed. The parameter ∆ (distance from allocation) confirms this behavior.

Table 6.11 Performance parameters for n=10 and a selfish user

Cagg = 3 Cagg =−1 Cagg =−7
d 3.1800 7.9400 8.0100
ζ 52.6000 22.5000 16
∆ 28 31 31.2000
νmoves 2.3104 1.9491 1.1002

The allocation is not completed even for higher time horizon. These results do
not contradicts our analysis since, in Section 3.3.1, we always suppose that there
should be a positive probability of acceptance to complete the allocation while here
ρ(3,x) = 0 for all x ∈ X .

Mutual behavior.
Now we show some examples with the probability of acceptance (6.5). When needed
we include the results of the classical algorithm to make a comparison. The first
example is for n = 10 users, later we consider higher number of agents and different
topologies.

Example 6.3.6. Consider to have n = 10 users on a complete graph. Each of them
has αx = a = 45, βx = b = 50 and reliability λx = 1. We let vary the aggregation
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parameter Cagg =−7,−1,3 and fix Ccon
y for all y ∈ X and Call . First we show the

final allocation states

W−1 =



0 5 5 5 5 5 5 5 5 5
5 0 5 5 5 5 5 5 5 5
5 5 0 5 5 5 5 5 5 5
5 5 5 0 5 5 5 5 5 5
5 5 5 5 0 5 5 5 5 5
5 5 5 5 5 0 5 5 5 5
5 5 5 5 5 5 0 5 5 5
5 5 5 5 5 5 5 0 5 5
5 5 5 5 5 5 5 5 0 5
5 5 5 5 5 5 5 5 5 0



W3 =



0 0 0 0 0 0 0 0 0 45
0 0 0 0 0 45 0 0 0 0
0 0 0 0 0 0 0 45 0 0
0 0 0 0 0 0 0 0 45 0
0 0 0 0 0 0 45 0 0 0
0 45 0 0 0 0 0 0 0 0
0 0 0 0 45 0 0 0 0 0
0 0 45 0 0 0 0 0 0 0
0 0 0 45 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0



Table 6.12 Performance parameters for n=10 with mutual probability of acceptance

Cagg = 3 Cagg = 3 Cagg =−1 Cagg =−7
d 1.7400 1.8600 9 9
ζ 94.5000 46.9 0 0
ψ 0.9402 0.9381 1 1
∆ 0 0 0 0
νmoves 1.6862 1.7160 2.2784 1

Example 6.3.7. Suppose there are n = 10 users with agent 3 selfish. Each of the user
has αx = a = 45, βx = b = 50 and λx = 1. We let vary the aggregation parameter
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Cagg = −7,−1,3 and fix Ccon
y for all y ∈ X and Call . We do not include the final

allocation states but we show the parameters in the following table.

Table 6.13 Performance parameters for n=10 and a selfish user

Cagg = 3 Cagg =−1 Cagg =−7
d 3.2500 8.1000 8.1000
ζ 71.9000 44.9000 45
∆ 3.3000 0.1000 65.8000
νmoves 1.4062 1.5707 0.8578

Comparing this results with Example 6.3.5 we have that this probability of acceptance
give worse performance parameters in terms of selfishness. In fact, for Cagg = 3,−1
user 3 allocates almost all the data while for Cagg = −7 not only user 3 does not
complete the allocation but also some other agents are unable to store their data.

Example 6.3.8. Consider to have n= 50 users on a complete graph and on a regular
graph of degree 10. Suppose αx = a = 45, βx = b = 50 and λx = λ = 1 for all x ∈X .
Let Cagg = −7,3 while Ccon and Cagg are fixed; suppose that there are no selfish
users. The following tables shows the parameters.

Table 6.14 Performance parameters for n = 50 with mutual probability of acceptance

(a) Complete case

Cagg = 3 Cagg =−1 Cagg =−7
d 5.5880 45 45
ζ 94.8000 27.4000 30.8000
ψ 0.8486 0.9994 0.9994
∆ 0 0 0
νmoves 1.6910 4.7175 4.9665

(b) Regular case

Cagg = 3 Cagg =−1 Cagg =−7
d 2.3100 9.9980 10
ζ 61.5000 13.3000 8.5000
ψ 0.9436 0.9925 1
∆ 0 0 0
νmoves 3.4886 4.4200 4.9000
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Source/Resource.
In this last paragraph we show some simulation with the probability of acceptance
(6.6). As we will see, this probability behave worse than the previous two. For this
reason we include only an example with 10 users.

Example 6.3.9. Consider to have n = 10 users, each of them with αx = a = 45,
βx = b = 50 and λx = 1. The congestion and allocation parameter are fixed while
we let vary the aggregation constant. The first results are for the usual time horizon
T = 5∑x αx; below we show the final states of the system.

W3 =



0 0 45 0 0 0 0 0 0 0
0 0 0 45 0 0 0 0 0 0
0 0 0 0 0 0 45 0 0 0
0 45 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45 0
0 0 0 0 0 0 0 0 0 45
0 0 0 0 0 45 0 0 0 0
0 0 0 0 45 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 45 0 0



W−1 =



0 3 4 3 5 3 2 5 4 3
5 0 3 3 7 2 2 2 2 3
5 3 0 3 3 4 2 3 2 4
4 4 4 0 4 5 5 3 4 3
5 7 5 5 0 4 4 4 4 4
3 3 3 7 3 0 3 3 4 2
2 2 2 4 3 2 0 2 2 4
5 5 5 5 5 5 5 0 5 5
3 5 3 4 3 3 3 3 0 4
5 5 6 3 3 3 3 3 5 0
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W−7 =



0 3 3 3 3 3 3 2 2 2
3 0 3 3 3 3 3 3 2 2
3 3 0 3 3 3 3 3 3 2
5 5 5 0 4 4 4 4 4 4
4 4 4 4 0 4 4 4 4 3
5 4 4 4 4 0 4 4 4 4
5 5 5 5 5 5 0 4 4 4
4 4 4 4 4 3 3 0 3 3
4 4 4 4 4 4 4 3 0 3
3 3 3 2 2 2 2 2 2 0


Even though the final state of the system for Cagg = 3 is a perfect matching, it is clear
that it is not symmetric; this means that the probability of acceptance (6.6) does not
encourage the reciprocity. The performance parameters show that in general the
final allocation state is not symmetric.

Table 6.15 Performance parameters for n=10, Source/Resource, T = 5∑x αx

Cagg =3 Cagg =3 Cagg =−1 Cagg =−7
d 1.7400 2.3700 9 9
ζ 94.5000 94.5000 15.7000 11.6000
ψ 0.9402 0.9223 0.7416 0.7285
∆ 0 5.7000 118.6000 125.2000
νmoves 1.6862 1.3333 0.7678 0.7285

Unfortunately, in none of the cases the allocation is completed. This is because
the probability of acceptance is very small in this approach, especially when the
resources are almost full but the allocated quantities per each user are small. In-
creasing the time horizon to T = 20∑x αx the algorithm gives a better performance
(shown in Table 6.16).

Clearly, if one consider the time horizon to be approximated with the estimations
of Chapter 4 (in particular with the upper bound given by Proposition 4.3.3) such
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Table 6.16 Performance parameters for n=10, Source/Resource, T = 20∑x αx

Cagg =3 Cagg =−1 Cagg =−7
d 1.9500 9 9
ζ 93 0 0
ψ 0.9593 1 1
∆ 0 0 0
νmoves 2.0847 1.0584 1.0004

allocation problem will not be shown. Since this approach require a higher amount
of time and therefore gives worse performances than the other cases, we do not
include other examples that will show the same behavior.

6.4 Multiple copies algorithm

In this section we show the results for the variant with multiple copies. We will
simulate two possible allocation algorithm. The first one allows the agents to allocate
all the copies at once. The second suppose to allocate only a single copy at a time.
The first approach is the fastest since in the second case we have to consider at
least σ iterations for each atom. However, in both the cases the Nash equilibrium is
reached.

As in the classical model and following the theoretical analysis, we take the
parameter γ time-varying and diverging to +∞. The tuning of the divergence rate is
known to be critical to obtain good results. Here we have chosen

γ(t +1) = γ(t)+
1

n∗1000

Most of the time, we suppose the units to be always on as we already show that there
are no substantial differences.

The congestion constant in the utility function is fixed and equal for all users, i.e.
Ccon

y =Ccon = 1 for all y ∈ X since we do not include the reliability here. Indeed,
the utility function is of the form expressed in (6.1).
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6.4.1 Allocation of all copies at once

Since the users allocate all the copies at once, the time horizon can be taken as in
Section 6.2, i.e., T = 5∑x∈X αx: in this way a unit x will activate, on average, a
number of times equal to 5 times the number of data it needs to allocate. The first
example is for n = 10 users, later we consider higher numbers of player and different
topologies

Example 6.4.1. Suppose there are n = 10 users on a complete graph. Each of them
has a quantity α = 18 to be allocated in σ = 3 copies; the resource capability is
β = 60. Call and Ccon are fixed as usual while we let vary Cagg = 3,1/2,−1. First,
we show the final allocation states.

W3 =



0 18 0 0 0 0 18 0 0 18
18 0 0 0 18 0 0 0 18 0
18 0 0 0 0 0 0 18 18 0
0 0 18 0 0 18 0 0 0 18

18 18 0 0 0 0 18 0 0 0
0 0 18 18 0 0 0 18 0 0
0 0 0 18 18 0 0 0 18 0
0 18 0 0 0 0 18 0 0 18
0 0 18 18 0 18 0 0 0 0
0 0 0 0 18 18 0 18 0 0



W1
2
=



0 18 0 1 18 0 0 17 0 0
17 0 17 0 0 17 1 1 1 0
0 0 0 0 0 0 18 0 18 18
0 0 1 0 18 1 0 17 0 17
0 0 0 18 0 0 18 0 18 0
0 18 0 0 0 0 0 18 0 18

17 16 0 16 1 1 0 1 1 1
18 0 0 0 18 0 18 0 0 0
1 0 18 17 0 16 0 2 0 0
0 0 18 0 0 18 0 0 18 0
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W−1 =



0 6 6 6 6 6 6 6 6 6
6 0 6 6 6 6 6 6 6 6
6 6 0 6 6 6 6 6 6 6
6 6 6 0 6 6 6 6 6 6
6 6 6 6 0 6 6 6 6 6
6 6 6 6 6 0 6 6 6 6
6 6 6 6 6 6 0 6 6 6
6 6 6 6 6 6 6 0 6 6
6 6 6 6 6 6 6 6 0 6
6 6 6 6 6 6 6 6 6 0


While the diffused allocation state seems equal to the classical case, in the

aggregated state W3 it is evident how the diversification constraint influence the
allocation. The following table shows the parameters.

Table 6.17 Performance parameters for n = 10, all copies at once

Cagg =−1 Cagg = 1/2 Cagg = 3
d 9 3.5300 3.5300
ψ 1 0.9988 0.9933
∆ 0 0 0
νmoves 1.1389 2.0922 1.6294

The fact that the final degree is not exactly 3 is due to the fact that also for the
distribution moves, agents have to re-store all the three copies.

Example 6.4.2. Cosider n = 50 users on a complete graph and on a regular graph of
degree 10. Each of them has βx = b = 60 and a quantity αx = a = 18 to be allocated
in σ = 3 copies. Call and Ccon are fixed as usual while we let vary Cagg = 3,1/2,−1.
The table shows the performance parameters in both the cases.

6.4.2 Allocation of one copy at a time

In this section we consider each copy as a single atom, in the sense that the agents
have to remember where the stored copies of an atom are allocated to guarantee the



136 CHAPTER 6. SIMULATIONS

Table 6.18 Performance parameters for n = 50, all copies at once

(a) Complete case

Cagg =−1 Cagg = 1/2 Cagg = 3
d 48.976 3.7480 3.9540
ψ 0.9995 0.9980 0.9936
∆ 0 0 0
νmoves 1.1673 2.0867 1.6047

(b) Regular case

Cagg =−1 Cagg = 1/2 Cagg = 3
d 10 3.9020 3.9320
ψ 1 0.9976 0.9897
∆ 0 0 0
νmoves 1.2613 2.3792 1.9793

diversification. Notice that in this case, since users allocate one copy at a time, the
total amount of data to be allocated is σ ∑x∈X αx therefore the time horizon is fixed
T = 5∗σ ∑x∈X αx. Moreover, the parameter νmoves represent the number of moves
per each copy while we introduce νσ

moves to indicate the number of moves per atom.

As usual, we start with an example with n = 10 users.

Example 6.4.3. Consider n = 10 users on a complete graph, each of them having
a quantity αx = a = 18 to be allocated in σ = 3 copies. The resource capability
is βx = b = 60 for all x ∈ X . Call and Ccon are fixed as usual while we let vary
Cagg = 3,1/2,−1. First, we show the final allocation states.

W−1 =



0 6 6 6 6 6 6 6 6 6
6 0 6 6 6 6 6 6 6 6
6 6 0 6 6 6 6 6 6 6
6 6 6 0 6 6 6 6 6 6
6 6 6 6 0 6 6 6 6 6
6 6 6 6 6 0 6 6 6 6
6 6 6 6 6 6 0 6 6 6
6 6 6 6 6 6 6 0 6 6
6 6 6 6 6 6 6 6 0 6
6 6 6 6 6 6 6 6 6 0
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W1/2 =



0 0 0 18 18 0 0 0 0 18
18 0 0 0 0 0 0 0 18 18
0 0 0 0 0 18 18 0 18 0
18 0 18 0 0 0 0 18 0 0
0 0 0 18 0 18 18 0 0 0
0 18 0 0 18 0 0 18 0 0
18 0 0 0 0 0 0 0 18 18
0 18 18 0 18 0 0 0 0 0
0 0 18 0 0 18 18 0 0 0
0 18 0 18 0 0 0 18 0 0


From the table it emerges that this approach is better, in terms of convergence,

than the previous one with the allocation of all the copies at once.

Table 6.19 Performance parameters for n = 10, one copy at a time

Cagg =−1 Cagg = 1/2
d 9 3
ψ 1 1
∆ 0 0
νmoves 3.2694 4.8139
νσ

moves 1.0898 1.6046

Example 6.4.4. Suppose there are n = 50 users on a complete graph and on a
regular graph of degree 10. Each of them has a quantity αx = a = 18 to be allocated
in σ = 3 copies; the resource capability is βx = b = 60. We let vary Cagg = 3,−1
while Call and Ccon are fixed as usual. The performance parameters are in Tables
6.20a and 6.20b.

6.5 Conclusions

In this section we presented a wide set of simulation that validate the theoretical
analysis. In the fist part we show the convergence properties of the algorithm, varying
not only the congestion, aggregation and allocation parameters but also the users
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Table 6.20 Performance parameters for n = 50, all copies at once

(a) Complete case

Cagg =−1 Cagg = 3
d 49 3.5640
ψ 0.9995 0.9981
∆ 0 0
νmoves 3.7631 4.6373
νσ

moves 1.2677 1.5458

(b) Regular case

Cagg =−1 Cagg = 3
d 9 3.4300
ψ 1 0.9922
∆ 0 0
νmoves 3.2694 3.4174
νσ

moves 1.0898 1.1391

quantities αx and βx. Moreover we show how the reliability influence the allocation,
encouraging the agents in the choice of more trustable resources. On the other hand,
the plots of Figure 6.4 show the good properties of the learning process that lead the
users to know the reliability of their neighbors.

Section 6.3 is devoted to the reciprocity algorithm. We present the different
probabilities of acceptance and their influence on the final configuration. This set
of simulation, not only confirms the convergence properties of the algorithm with
reciprocity, but also offers the possibility to compare the probabilities of acceptance.
Indeed, while the "Number of Refusal" approach has some nice symmetry properties,
the "Source/Resource" probability is too small to guarantee the allocation in a
reasonable amount of time. From this section emerges that the first probability of
acceptance is the best choice since it gives the agents the possibility to exclude a
selfish user from completing the allocation.

The last part of this chapter include the simulation for the algorithm with multiple
copies. Even though the theoretical analysis is not completed yet, the simulation
suggest that the algorithm reaches convergence to a Nash equilibrium that is also a
maximum of the potential. A more careful analysis of the theory is needed but these
results represent an interesting starting point.



Chapter 7

Wisdom of crowds and naive learning

7.1 Introduction

Since social network are primary conduits of opinion and informations, carry news
about products, influence decisions and drive political opinions toward other groups,
it is important to understand how beliefs change through time, how this changes
depend on the network structure and whether the final outcome is reasonable.

Social networks in mathematics typically consist of a graph where each node
possesses a state variable; the interconnection between the individuals depends on the
edges in the underlying graph [8]. Imagine that a number of independent individuals
possess an information represented by a real number (for instance an opinion on a
given fact). Agents interact and change their opinion by averaging with the opinions
of other individuals. A natural system that aggregates individual opinions is an
influence system, that is, a social dynamic process whereby individual opinions,
starting from their respective initial conditions, evolve possibly towards consensus.
In social sciences, empiric evidence [10] has shown how such aggregate opinion
may give a very good estimation of unknown quantities: such phenomenon has been
proposed in the literature as wisdom of crowds [15].

The wisdom of the crowd is the collective opinion of a group of individuals rather
than that of a single expert. The term crowd refers to any group of people and it is
not supposed to be cohesive. A large group answering to questions has been often
found to be better than the answer given by any of the individuals within the group.
An explanation for this phenomenon is that each individual opinion is influenced by
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a noise and, taking the average over a large number of responses, its effect will be in
some way canceled.

In this chapter we study a well known model of social interaction: the DeGroot
model [5, 9], which is known to reach a consensus (under proper assumptions).
The social structure of the DeGroot model is described by a weighted and possibly
directed network. Agents have beliefs about some common question of interest,
communicate with their neighbors in the network and update their opinion. An
agent’s new belief is the weighted average of her neighbors’ opinion from the
previous instant of time. Over time, provided some connectivity and aperiodicity
condition on the underlying graph, beliefs converge to a consensus [5, 4].

The purpose of our work is to show under which condition the population is
finite-time wise. We start by reviewing the naive learning model for large populations
proposed by Golub and Jackson [11] and based on the DeGroot opinion formation
process. In this model, the population is wise if the final (in the limit as time grows)
consensus opinion is equal to the correct value. This property is cast in terms of
the left dominant eigenvector of the influence matrix in large populations (i.e., in
the limit as the number of individual diverges). Specifically, a wise population is
a sequences of row-stochastic matrices whose left dominant eigenvector satisfies a
“vanishing maximum entry condition.” This condition ensures that no individual’s
initial erraneous opinion has an outside impact on the final consensus opinion,
thereby rendering the population unwise.

In this chapter we consider a variation of the naive learning setting in which
the DeGroot opinion formation process is allowed only finite time and does not,
therefore, reach completion. Our individuals do not reach consensus and we say
that a population is finite-time wise if the average of the individuals opinion remains
correct as time progresses along the opinion dynamics process. In other words,
Golub and Jackson [11] consider wisdom in the limit in which n → ∞ after k → ∞,
while we consider the limit in which n → ∞ after at k = 1, k fixed, and uniformly
over k. We argue that these finite-time variation are especially relevant for large
population, since it is known that the time required for consensus to be approximately
achieved typically diverges as the population size diverges.

We apply these findings in two cases: the Erdös-Rényimodel and the preferential
attachment model. The wisdom in all possible senses (finite-time, uniformly and
infinite-time) follows quite easily in the first model. On the other hand, we show
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how the classic Barabási-Albert model (with attachment probability linearly propor-
tional to degree) is wise in all possible senses, whereas a super-linear preferential
attachment model loses all its wisdom properties.

The chapter is organized as follow. Section 7.2 contains various wisdom defi-
nitions and corresponding general conditions. Section 7.3 contains the analysis of
several counterexamples showing the general difference among the various wisdom
notions. A sufficient condition for finite-time wisdom is given in Section 7.4 and
in Section 7.5 we characterize pre-uniform wisdom in sequences of equal-neighbor
matrices. The last section contains some concluding remarks.

7.1.1 Review of notation and preliminary concepts

Let 1n ∈ Rn×1 denote the vector of all ones. Given x ∈ Rn, we define its average
by ave(x) = 1

n1⊤
n x = 1

n ∑
n
i=1 xi. Given x ∈ Rn, its norms by ∥x∥1 = ∑i |xi|, ∥x∥2 =

(∑i x2
i )

1/2 and ∥x∥∞ = maxi |xi|. Let ∆n = {x ∈ Rn | x ≥ 0,1⊤
n x = 1}. Given x ∈ ∆n,

the useful inequality
x⊤x ≤ ∥x∥∞ (7.1)

follows from x⊤x ≤ ∥x∥∞∥x∥1 = ∥x∥∞.

Stochastic matrices A matrix P ∈Rn×n is non-negative (P ≥ 0) if Pi j ≥ 0 for each
i, j. For such a matrix, the maximum column sum is

∥P∥1 = max
j∈{1,...,n}

n

∑
i=1

Pi j = max1⊤
n P.

Note that ∥1
nP∥1 is the maximum column average of P. To a nonnegative matrix P

we associate an unweighted directed graph G = ({1, . . . ,n},E) where E = {(i, j) ∈
{1, . . . ,n}2 | Pi j > 0}. Given a node j, let N j denote the set of out-neighbors of j.
The nonnegative matrix P is irreducible if G is strongly connected and primitive if G
is strongly connected and aperiodic.

A matrix P ∈ Rn×n is stochastic if P ≥ 0 and P1n = 1n.

Given a stochastic irreducible matrix P, its left dominant eigenvector π ∈ ∆n is
unique and well defined by the Perron-Frobenious Theorem and satisfies π⊤P = π⊤.
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Given a primitive stochastic matrix P, its mixing time is defined by

τmix(P) := inf
{

t ∈ N
∣∣∣ max

i, j
∑k |(P)

t
ik −P)t

jk| ≤
1
2e

}
. (7.2)

Equal-neighbor models

Definition 7.1.1 (Equal-neighbor, directed equal-neighbor, and weighted-neighbor
matrices). Given a nonnegative matrix W ∈ Rn×n

≥0 with at least one positive entry in
each row, define the stochastic matrix P ∈ Rn×n by

P = diag(W1n)
−1W. (7.3)

Then the matrix P is said to be

1. equal-neighbor if W ∈ {0,1}n×n and W =W⊤,

2. directed equal-neighbor if W ∈ {0,1}n×n and W ̸=W⊤, and

3. weighted-neighbor if W ∈ Rn×n
≥0 and W =W⊤.

In these three definitions, the graph associated to W is undirected unweighted,
directed unweighted, and undirected weighted respectively.

Note that, given a non-negative weight matrix W ∈Rn×n
≥0 , the weighted out-degree

of a node i in the weighted digraph associated to W is di = (W1n)i = ∑
n
j=1Wi j.

Because we assume di > 0 for all i, equation (7.3) is well-posed and equivalent to:

Pi j = d−1
i Wi j.

If W is symmetric, then di is called the weighted degree. If additionally W is binary,
then di is called the degree and

Pi j = d−1
i Wi j =

d−1
i , if j ∈ Ni,

0, otherwise .
(7.4)
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We conclude with a known useful result. The left dominant eigenvector π of an
irreducible equal-neighbor matrix P satisfies, for all i ∈ {1, . . . ,n},

πi =
di

d1 + · · ·+dn
. (7.5)

7.2 Definitions and basic results

We consider the classic French-DeGroot model [9, 5] of opinion dynamics

xi(k+1) =
n

∑
j=1

Pi jx j(k), (7.6)

where xi(k) denotes the opinion of individual i, i ∈ {1, . . . ,n} at time k ∈ Z≥0. The
coefficient Pi j denotes the weight that individual i assigns to individual j when
carrying out this revision. The matrix P is assumed row-stochastic and defines a
weighted directed graph G.

We assume
xi(0) = µ +ξi(0), (7.7)

where the constant µ ∈ R is unknown parameter and the noisy terms ξi(0) are a
family of independent Gaussian-distributed variables such that E[ξi(0)] = 0 and
Var[ξi(0)] = σ2 < ∞ for all i ∈ {1, . . . ,n}.

We will consider sequences of DeGroot models (7.6) with increasing dimensions
n and denote all relative quantities with a superscript [n]. In particular, the state of
the n-dimensional model is x[n]. Given assumption (7.7) and assuming µ is kept
constant, the law of large numbers implies that, almost surely,

lim
n→∞

ave(x[n](0))) = µ.

Definition 7.2.1 (Wisdom notions). Given a sequence of stochastic matrices of
increasing dimensions {P[n] ∈ Rn×n}n∈N, define a sequence of opinion dynamics
problems with initial state {x[n](0) ∈ Rn}n∈N satisfying assumption (7.7) and evolu-
tion {x[n](k) ∈ Rn}n∈N at times k ∈ N. The sequence {P[n] ∈ Rn×n}n∈N, is

1. one-time wise if lim
n→∞

ave(x[n](1))) = µ;
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2. finite-time wise if lim
n→∞

ave(x[n](k))) = µ , for all k ∈ N;

3. wise if lim
n→∞

lim
k→∞

ave(x[n](k))) = µ;

4. uniformly wise if lim
n→∞

sup
k∈N

|ave(x[n](k)))−µ|= 0.

Here all limits are meant in the probability sense.

The following theorem provides necessary and sufficient characterizations of the
notions 1, 2, and 3 of the above definition. The proof of these characterizations is
immediate from [11, 14].

Theorem 7.2.2 (Necessary and sufficient conditions for finite-time wisdom and
wisdom). Consider a sequence of stochastic matrices of increasing dimensions
{P[n] ∈ Rn×n}n∈N. The sequence is

1. one-time wise if and only if lim
n→∞

∥1
nP[n]∥1 = 0;

2. finite-time wise if and only if, for all k ∈ N, lim
n→∞

∥1
n(P

[n])k∥1 = 0.

Moreover, assuming {P[n]}n∈N are primitive, the sequence is

3. wise if and only if lim
n→∞

∥π [n]∥∞ = 0, where π [n] ∈ ∆n is the left dominant

eigenvector of P[n], for n ∈ N.

Proof. Define

χ
[n](k) =

1
n

1⊤
n (P

[n])k (7.8)

and notice that
ave(x[n](k)) = µ +(χ [n](k))⊤ξ

[n](0).

Thus,

E[ave(x[n](k))] = µ,

Var[ave(x[n](k))] = σ
2(χ [n](k))⊤χ

[n](k).

By Chebyshev’s inequality, the convergence in probability of ave(x[n](k)) to µ

is equivalent to the convergence to 0 of the variance. Statements 1 and 2 can



7.2. DEFINITIONS AND BASIC RESULTS 145

now be proven by applying the inequality (7.1) with x = χ [n](k) and noting that
∥χ [n](k)∥∞ = ∥1

n(P
[n])k∥1.

Regarding statement 3, the primitivity assumption implies lim
k→+∞

x[n](k)= (π [n])⊤
(
µ1n+

ξ [n](0)
)

where π [n] is the left dominant eigenvector of P[n]. Therefore,

lim
k→+∞

ave(x[n](k)) = µ +(π [n])⊤ξ
[n](0),

and statement 3 follows by applying the inequality (7.1) with x = π [n].

There is a natural property that, in analogy to the other characterizations presented
in Theorem 7.2.2, is related to uniform wisdom. We present it as a separated concept.

Definition 7.2.3 (Pre-uniform wisdom). A sequence of stochastic matrices of increas-
ing dimensions {P[n] ∈ Rn×n}n∈N is pre-uniformly wise if lim

n→∞
sup
k∈N

∥1
n(P

[n])k∥1 = 0.

While pre-uniform wisdom is not sufficient to guarantee uniform wisdom, it
surely yields wisdom and finite-time wisdom, as an immediate consequence of
Theorem 7.2.2.

Finally, for what concerns uniform wisdom, we present a sufficient condition
that turns out to be useful in many applications. Recall the notion of mixing time
from equation (7.2).

Theorem 7.2.4 (A sufficient condition for uniform wisdom). A sequence of primitive
stochastic matrices of increasing dimensions {P[n] ∈ Rn×n}n∈N is uniformly wise if

lim
n→+∞

sup
k∈N

∥∥∥1
n
(P[n])k

∥∥∥
1
τmix(P[n]) = 0.

Proof. Define

Y [n](k) = ave(x[n](k)))−µ = χ
[n](k)⊤ξ

[n](0),

where χ [n](k) is defined in (7.8). Notice that

lim
k→+∞

Y [n](k) = Y [n] := (π [n])⊤ξ
[n](0).
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Fix δ > 0 and notice that

P
[

sup
k∈N

|Y [n](k)| > δ

]
≤ P

[
sup
k∈N

|Y [n](k)−Y [n]| > δ/2
]
+P

[
|Y [n]|> δ/2

]
. (7.9)

We now estimate the two right-end-side terms of equation (7.9). Regarding the first
term, we fix k and we use Chebyshev’s inequality to obtain

P[|Y [n](k)−Y [n]|> δ/2]

≤ 4
δ 2 Var[Y [n](k)−Y [n]]

≤ 4
δ 2 (χ

[n](k)−π
[n])⊤(χ [n](k)−π

[n])

≤ 4
δ 2∥χ

[n](k)−π
[n]∥∞∥χ

[n](k)−π
[n]∥1

≤ 8
δ 2 sup

k∈N

∥∥∥1
n
(P[n])k

∥∥∥
1
∥χ

[n](k)−π
[n]∥1, (7.10)

where last step follows from the relation ∥χ [n](k)∥∞ = ∥1
n(P

[n])k∥1 and the limit
χ [n](k) → π [n] for k → +∞. The final 1-norm factor in equation (7.10) can be
estimated in terms of the mixing time [12, Section 4.5]

∥χ
[n](k)−π

[n]∥1 ≤ exp
(
−
⌊

k
τmix(P[n])

⌋)
. (7.11)

Substituting into inequality (7.10) and using a union bound estimation, we now
obtain

P
[

sup
k∈N

|Y [n](k)−Y [n]|> δ/2
]
≤ 8

δ 2 sup
k∈N

∥∥∥1
n
(P[n])k

∥∥∥
1
∑
k

exp
(
−
⌊

k
τmix(P[n])

⌋)
=

8e
δ 2 sup

k∈N

∥∥∥1
n
(P[n])k

∥∥∥
1

1

1− exp
(
− 1

τmix(P[n])

)
≤ 8e

δ 2 sup
k∈N

∥∥∥1
n
(P[n])k

∥∥∥
1
τmix(P[n]). (7.12)
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The second term in the right-hand-side of equation (7.9) can be easily bounded using
Chebyshev’s inequality and the simple bound (7.1):

P[|Y [n]|> δ/2]≤ 4
δ 2 Var[Y [n]] =

4
δ 2 (π

[n])⊤(π [n])

≤ 4
δ 2∥π

[n]∥∞

≤ 4
δ 2 sup

k∈N

∥∥∥1
n
(P[n])k

∥∥∥
1
. (7.13)

The theorem statement follows from putting together the inequalities (7.9), (7.12),
and (7.13).

7.3 Basic implications and counterexamples

In the following lemma we show how the basic wisdom notions in Definitions 7.2.1
and 7.2.3 are related by a simple implication and how four counterexamples show that
no additional statements may be made in general. To construct our counterexamples,
we will rely upon the equal neighbor models as in Definition 7.1.1.

Lemma 7.3.1 (Basic implications and counterexamples). If a sequence of primitive
stochastic matrices of increasing dimensions {P[n] ∈Rn×n}n∈N is pre-uniformly wise,
then it is wise and finite-time wise. Moreover, there exist sequences that

1. are neither wise nor finite-time wise (see Example 7.3.2),

2. are wise, but not one-time wise (see Example 7.3.3),

3. are finite-time wise, but not wise (see Example 7.3.4), and

4. are wise and finite-time wise, but not pre-uniformly wise (see Example 7.3.5).

We illustrate this lemma in Figure 7.1. The proof of the first statement in the
lemma is an immediate consequence of Definition 7.2.3 and the characterizations in
Theorem 7.2.2. The four existence statement are established by providing explicit
examples later in this section.
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wise
uniformly wiseneither wise,

nor finite-time wise Any doubly-stochastic family
finite-time wise

finite-time wise and wise,
but not uniformly wise

Fig. 7.1 Logical relations among sets of sequences with varying degree of wisdom.
For each set we provide an example sequence that belongs to that set, but not to any
strict subset of it.

Example 7.3.2 (The star graph is neither wise nor finite-time wise). For n ∈ N,
define {P[n] ∈ Rn×n}n∈N by

P[n] =



1/n 1/n 1/n · · · 1/n

1 0 0
... 0

1 0 0
... 0

...
...

... . . . ...
1 0 0 · · · 0


.

In other words, consider the sequence of primitive equal-neighbor matrices defined
by increasing-dimension star graphs (with a self-loop at the central node). It is easy

to see that the dominant left eigenvector of P[n] is π [n]=
[

n
2n−1

1
(2n−1) . . . 1

(2n−1)

]⊤
.

The sequence {P[n]}n∈N is neither wise, nor one-time wise because

lim
n→∞

∥π
[n]∥∞ = lim

n→∞
π
[n]
1 =

1
2
,

lim
n→∞

∥1
nP[n]∥1 = lim

n→∞
max

j∈{1,...,n}
1
n

n

∑
i=1

P[n]
i j

= lim
n→∞

1
n

n

∑
i=1

P[n]
i1 = lim

n→∞

n−1+1/n
n

= 1. □

Example 7.3.3 (The union/contraction of star and complete graph is wise, but not
one-time wise). For n ∈ N, let Sn ⊔Kn denote the undirected graph with 2n nodes
obtained by (i) computing the union of the star Sn (one center node and n leafs) and
a complete graph Kn, and (ii) identifying/contracting one leaf of Sn with a node of Kn.
Accordingly, let {W [n]}n∈N be the sequence of adjacency matrices of {Sn ⊔Kn}n∈N
and {P[n]}n∈N be the corresponding sequence of equal-neighbor matrices. These
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matrices are primitive because Kn contains cycles with co-prime length. Note the
slight abuse of notation: P[n] has dimension 2n.

The graph Sn⊔Kn, for n= 6, is depicted in Figure 7.2, where nodes are numbered
as follows: node 1 is always the center of the star and node n+ 1 is the node
belonging to both the star and the complete graph.

KnSn

1 n+1

23

. . .

. . . n

2n

. . .

. . .

. . .

n+2

Fig. 7.2 The union and contraction of a star graph with a complete graph.

For this graph Sn ⊔Kn, from equation (7.5), we compute the left dominant eigen-
vector of P[n]. First, we observe that: d1 = n, d j = 1 for a generic leaf j ∈ {2, . . . ,n},
dn+1 = n, and dh = n−1 a generic node h ∈ {n+2, . . . ,2n} in Kn. Hence, the sum of
all degrees is n+1 ·(n−1)+n+(n−1)2 = n2+n and the left dominant eigenvector
satisfies:

π
[n]
1 =

n
n2 +n

, π
[n]
j =

1
n2 +n

,

π
[n]
n+1 =

n
n2 +n

, π
[n]
h =

n−1
n2 +n

.

Next, we compute the column sums of P[n]. For the two special nodes we have

2n

∑
i=1

P[n]
i1 =

n

∑
i=2

P[n]
i1 +P[n]

n+1,1 = (n−1)+
1
n
,

2n

∑
i=1

P[n]
i,n+1 = P[n]

1,n+1 +
2n

∑
i=n+2

P[n]
i,n+1 = 1+

1
n
,
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and, for a generic leaf j ∈ {2, . . . ,n} in Sn and a generic h ∈ {n+2, . . . ,2n} in Kn,
we have

2n

∑
i=1

P[n]
i j =

1
n
,

2n

∑
i=1

P[n]
ih = P[n]

n+1,h +
2n

∑
i=n+2

P[n]
ih =

1
n
+(n−2)

1
n−1

.

In summary, we note that the sequence {P[n]}n∈N is wise but not one-time wise
because

lim
n→∞

∥π
[n]∥∞ = lim

n→∞
π
[n]
1 = lim

n→∞

n
n2 +n

= 0,

lim
n→∞

∥ 1
2nP[n]∥1 = lim

n→∞
max

j∈{1,...,2n}
1

2n

2n

∑
i=1

P[n]
i j

= lim
n→∞

1
2n

2n

∑
i=1

P[n]
i1 = lim

n→∞

n−1+ 1
n

2n
=

1
2
. □

Example 7.3.4 (The path graph with biased weights is finite-time wise, but not wise).
Consider a sequence of increasing-dimension path graphs whose biased weights are
selected as follows: (i) pick a constant ν > 1 and define the unique scalars q > p > 0
satisfying q/p = ν and p+q = 1, and (ii) define the n-dimensional weighted digraph
as in Figure 7.3 (self-loops at node 1 and n). Let {P[n]}n∈N denote the sequence of
primitive stochastic adjacency matrices of the the path graphs with biased weights.
We have:

1 2p
q

p
q

3 p
q

nn�1

p q

Fig. 7.3 Directed path with biased weights
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P[n] =



p q · · · 0 0

p 0 q . . . 0
... . . . . . . . . . 0

0 . . . p 0 q
0 0 · · · p q


.

Let π [n] be the dominant left eigenvector of P[n]. We claim that

π
[n]
1 =

ν −1
νn −1

, π
[n]
i = ν

i−1
π
[n]
1 , for i ∈ {2, . . . ,n}. (7.14)

We prove this claim as follows. From (π [n])⊤ = (π [n])⊤P[n], we get

π
[n]
1 p+π

[n]
2 p = π

[n]
1 ,

π
[n]
i−1q+π

[n]
i+1 p = π

[n]
i , for i ∈ {2, . . . ,n−1},

π
[n]
n−1q+π

[n]
n q = π

[n]
n .

From the first equality we immediately have π
[n]
2 = νπ

[n]
1 . Next we prove by recursion

that π
[n]
i = ν i−1π

[n]
1 . This statement is true for i = 2. Assuming it is true for arbitrary

i, we compute

π
[n]
i+1 =

1
p

π
[n]
i − q

p
π
[n]
i−1 =

1
p

ν
i−1

π
[n]
1 − q

p
ν

i−2
π
[n]
1

=
(1

p
ν − q

p

)
ν

i−2
π
[n]
1 =

1− p
p

ν
i−1

π
[n]
1 =

q
p

ν
i−1

π
[n]
1 .

The value of π
[n]
1 in (7.14) follows from requiring 1 = ∑

n
i=1 π

[n]
i = ∑

n
i=1 ν i−1π

[n]
1 =

νn−1
ν−1 π

[n]
1 . This concludes our proof of the formula (7.14) for π [n].
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Note that from formula (7.14), we know π
[n]
n = ν−1

νn−1νn−1 ≍ ν−1
ν

for n → ∞. In
summary, we note that the sequence {P[n]}n∈N is not wise but finite-time wise because

lim
n→∞

∥π
[n]∥∞ = lim

n→∞
π
[n]
n =

ν −1
ν

> 0,

lim
n→∞

∥1
n(P

[n])k∥1 ≤ lim
n→∞

∥1
nP[n]∥k

1

= lim
n→∞

(
max

j∈{1,...,n}
1
n

n

∑
i=1

P[n]
i j

)k

≤ lim
n→∞

2k

n
= 0, for all k ∈ N,

where we used the fact that the in-degree of each node is upper bounded by 2. □

Example 7.3.5 (The reversed binary tree with root-leaves edges is wise and finite–
time wise, but not pre-uniformly wise). We define a sequence of directed equal-
neighbor model (see Definition 7.1.1) by defining the corresponding sequence of
binary (not symmetric) W [n] matrices. We consider a binary tree with k−1 layers and
n nodes, where n = 1+ · · ·+2k−1 = 2k−1

2−1 = 2k −1. The edge direction is opposite
the usual convention (from root to leaves), there is a self loop in the root node, and
we add a directed edge from root to all leaves; see Figure 7.4. As in Figure 7.4, we
label the nodes as follows: v(1)1 at layer 1, v(2)1 ,v(2)2 at layer 2, and, more generally,
v(ℓ)1 , · · · ,v(ℓ)2ℓ−1 at layer ℓ, for ℓ ∈ {1, . . . ,k−1}.

v
(1)
1

v
(2)
1 v

(2)
2

v
(k�1)
1 v

(k�1)
2 v

(k�1)

2k�2
. . . . . .. . . . . . . . .

layer 1

layer (k � 1)

layer 2

...

Fig. 7.4 A reversed binary directed tree with root-leaves edges.

We now compute the left dominant eigenvector π [n]. For symmetry reasons, at
each layer ℓ ∈ {1, . . . ,k− 1}, we have π [n](v(ℓ)1 ) = · · · = π [n](v(ℓ)2ℓ−1). Next, define

π(ℓ) = π [n](v(ℓ)1 )+ · · ·+ π [n](v(ℓ)2ℓ−1) = 2ℓ−1π [n](v(ℓ)1 ) and note that an aggregation
argument leads to π(2) = · · ·= π(k−1) = 1

k and π(1) = 2π(2) = 2
k . Hence, in summary,
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for each node h ∈ {1, . . . ,2ℓ−1} at layer ℓ,

π
[n](v(ℓ)h ) =

2
k , if ℓ= 1,

1
2ℓ−1

1
k , if ℓ > 1.

In summary, the sequence is wise since

∥π
[n]∥∞ = max

ℓ∈{1,...,k−1}
max

h∈{1,...,2ℓ−1}
π
[n](v(ℓ)h )

= π
[n](v(1)1 ) =

2
k
=

1
log2(n+1)

,

and therefore limn→∞ ∥π [n]∥∞ = 0.

Next, we note ∑
n
i=1 Pi j ≤ ∑

n
i=1Wi j ≤ 3, where we used Pi j = d−1

i Wi j, di ≥ 1 and
knowledge of the fact that each node has at most 3 in-edges. Therefore, the sequence
is finite-time wise since, for all fixed time h:

lim
n→∞

∥1
n(P

[n])h∥1 ≤ lim
n→∞

∥1
nP[n]∥h

1

= lim
n→∞

(
max

j∈{1,...,n}
1
n

n

∑
i=1

P[n]
i j

)h

≤ lim
n→∞

2h

n
= 0.

Finally, the sequence is not pre-uniformly wise because, when k and n grow as
n = 2k −1, we estimate

lim
n→∞

1
n

n

∑
i=1

Pk−1
iv(1)1

≥ lim
n→∞

1
n

2k−1 = lim
n→∞

n+1
2n

=
1
2
,

where the first inequality follows if one deletes the term relative to the self loop in
the matrix P. □

These four examples complete the list of counterexamples in Lemma 7.3.1. We
may make one obvious additional statement: finite-time wisdom implies one-time
wisdom. The converse is not true, as established by the following counterexample.

Example 7.3.6 (The weighted double-star graph is one-time wise, but not two-time
wise). We define a sequence of weighted-neighbor matrices (recall Definition 7.1.1)
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as follows. For each n, as illustrated in Figure 7.5, the graph is a double star with
one root node (labelled j),

√
n intermediate nodes (a representative node is labelled

h) and n leafs (a representative node is labelled i). For simplicity we assume
√

n is a
natural number. The symmetric edge weights are selected as follows: 1 between root
and the intermediate nodes and 1/

√
n between the intermediate nodes and the leafs.

Note that the total number of nodes is n+
√

n+1 ≍ n. We add a self-loop with unit
weight at the root node j so that each matrix in the sequence is primitive.

root node

second star with
p

n nodes
attached to each node of the first star

first star with
p

n nodes
j

i

h

1
1

1

↵n

↵n

↵n

↵n ↵n

↵n

↵n

↵n

↵n

Fig. 7.5 A weighted double-star graph; we select αn = 1/
√

n.

With these definitions, we have Wh j = Wjh = 1 and, therefore, the weighted
degree of the root note j is d j =

√
n+1. We also have Wih =Whi = αn = 1/

√
n and,

therefore, the weighted degree of each intermediate node h is dh = 1+
√

nαn = 2
and the weighted degree of each leaf i is di = αn = 1/

√
n.

From the equality P = diag(W1n)
−1W defining a weighted-neighbor model,

we compute Pih = d−1
i Wih = 1, and Pjh = 1/(

√
n+1) so that the column sum of P

corresponding to an intermediate node h is
√

n×1+1×1/(
√

n+1)≍√
n. Similarly,

we compute Ph j = d−1
h Wh j = 1/2 so that the column sum of P corresponding to the

root node j is
√

n/2+1/(
√

n+1). Therefore, the sequence is one-time wise.

Finally, for each leaf i, we have (P2)i j = PihPh j = 1/2. Since there are n leafs,
the column sum of P2 corresponding to the root node j is at least n/2 ≍ n. The
matrix sequence is therefore not wise at time two. □
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7.4 A sufficient condition for finite-time wisdom

In this section we provide an insightful sufficient condition guaranteeing finite-time-
wisdom for general sequences of matrices. The main proof idea is to introduce a
recursive bound on the total influence of families of nodes. This bound amounts to
a stronger property than finite-time wisdom and, unlike what occurs for finite-time
wisdom, can be easily checked in terms of the matrix sequence.

We start with the following useful definition.

Definition 7.4.1 (Prominent families). Given a sequence of stochastic matrices
of increasing dimensions {P[n] ∈ Rn×n}n∈N, a sequence of sets of nodes {B[n] ⊂
{1, . . . ,n}}n∈N is said to be a P[n]-prominent family if

1. its size is negligible, that is, |B[n]|= o(n), but

2. its total one-time influence is order 1, that is

1
n

n

∑
i=1

∑
j∈B[n]

P[n]
i j ≍ 1.

While one-time wisdom does not imply finite-time wisdom in general sequences
(see Example 7.3.6), the following key result shows how the absence of prominent
families is inherited by the powers of P[n].

Theorem 7.4.2 (The absence of prominent families is persistent and implies finite–
time wisdom). Consider a sequence of stochastic matrices of increasing dimensions
{P[n] ∈ Rn×n}n∈N. If there is no P[n]-prominent family, then

1. for every k, there is no (P[n])k-prominent family, and

2. P[n] is finite-time wise.

In order to prove Theorem 7.4.2 we provide some general notions and then
establish the recursive influence bound. Given an n×n stochastic matrix P, define
the maximum one-time influence of a set of nodes ΦP : {0, . . . ,n}→ R≥0 by

ΦP(0) = 0,

ΦP(s) = max
B⊆{1,...,n},|B|=s

n

∑
i=1

∑
j∈B

Pi j, s ∈ {1, . . . ,n}.
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Clearly, ΦP(s) is non-decreasing in s. Notice moreover that

ΦP(1) = max
i∈{1,...,n}

n

∑
i=1

Pi j = ∥P∥1,

ΦP(n) =
n

∑
i=1

n

∑
j=1

Pi j = n.

We can extend the definition of ΦP and define ΦP :R≥0 →R≥0 by ΦP(x) =ΦP(⌊x⌋).
Note that ΦP remains a non-decreasing function.

Remark 7.4.3. We present two simple statements without proof.

1. The absence of P[n]-prominent families is equivalent to the following fact:

∀{an ∈ R≥0}n∈N satisfying an = o(n), ΦP[n](an) = o(n). (7.15)

2. Since n−1∥P[n]∥1 = n−1ΦP[n](1), the previous statement and Theorem 7.2.2
together imply that, if there is no P[n]-prominent family, then P[n] is one-time
wise. □

The following technical result will play a crucial role in our derivations.

Lemma 7.4.4 (Recursive influence bound). Let P,Q be n× n stochastic matrices.
For every δ > 0 and s ∈ {0, . . . ,n}, it holds

ΦPQ(s)≤ ΦP (δΦQ(s))+
n
δ
.

Proof. Define the shorthand V = {1, . . . ,n}. Consider any B⊆ V and define

NQ
B (δ ) =

{
h ∈ V

∣∣ ∑ j∈BQh j ≥ δ
−1}.
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Notice that

∑
i∈V

∑
j∈B

(PQ)i j = ∑
i∈V

∑
h∈V

∑
j∈B

PihQh j

= ∑
i∈V

∑
h∈NQ

B (δ )

Pih ∑
j∈B

Qh j + ∑
i∈V

∑
h/∈NQ

B (δ )

Pih ∑
j∈B

Qh j

≤ ∑
i∈V

∑
h∈NQ

B (δ )

Pih + ∑
i∈V

∑
h/∈NQ

B (δ )

Pihδ
−1

≤ ΦP

(
|NQ

B (δ )|
)
+

n
δ
,

(7.16)

where last inequality follows from the definition of ΦP and the trivial bound

∑
i∈V

∑
h/∈NQ

B (δ )

Pih ≤ 1.

Note that

ΦQ(|B|)≥ ∑
h∈V

∑
j∈B

Qh j ≥ ∑
h∈NQ

B (δ )

∑
j∈B

Qh j ≥ |NQ
B (δ )| ·δ−1,

which implies
|NQ

B (δ )| ≤ δΦQ(|B|).

Therefore,

∑
i∈V

∑
j∈B

(PQ)i j ≤ ΦP (δΦQ(|B|))+
n
δ
.

Now, fix a size s and the proof is complete by computing the maximum value of the
left and right-hand side over all subsets B⊆ V with |B|= s.

We are finally ready to prove the main result in this section.

Proof of Theorem 7.4.2. We start by proving statement 1. Given Remark 7.4.31, it
suffices to to show that

∀{an ∈ R≥0}n∈N satisfying an = o(n), Φ(P[n])k(an) = o(n). (7.17)

We proceed by induction on k. Indeed we know from our assumption that the
statement in equation (7.17) is true for k = 1. We now suppose it is true for k and we



158 CHAPTER 7. WISDOM OF CROWDS AND NAIVE LEARNING

prove it for k+1. We fix a sequence {an} such that an = o(n). Lemma 7.4.4 implies

Φ(P[n])k+1(an)≤ ΦP[n]

(
δΦ(P[n])k(an)

)
+

n
δ
.

The induction assumption implies that Φ(P[n])k(an) = o(n) and, by Remark 7.4.31,
we have that

ΦP[n]

(
δΦ(P[n])k(an)

)
= o(n).

Therefore

limsup
n→∞

Φ(P[n])k+1)(an)

n
≤ 1

δ

and, because δ is arbitrary,

limsup
n→∞

Φ(P[n])k+1)(an)

n
= 0.

This equality completes the proof by induction and proves statement 1. Statement 2
follow from statement 1 considering that

1
n
∥(P[n])k∥1 =

1
n

Φ(P[n])k(1).

7.5 A necessary and sufficient condition for pre-uniform
wisdom

In this section we focus on sequence of equal-neighbor stochastic matrices (recall
Definition 7.1.1). For this setting we are able to provide a complete characterization
of one-time, finite-time and pre-uniform wisdom. We start with a revised notion of
prominence.

Definition 7.5.1 (Prominent individuals). Given a sequence of stochastic matri-
ces of increasing dimensions {P[n] ∈ Rn×n}n∈N, a sequence of individuals {k[n] ∈
{1, . . . ,n}}n∈N is said to be P[n]-prominent if its total one-time influence is order 1,
that is

1
n

n

∑
i=1

P[n]
ik[n]

≍ 1.
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In other words, a prominent individual is a prominent family composed of a
single individual at each n.

Remark 7.5.2. Some comments are in order.

1. The absence of prominent families implies the absence of prominent individu-
als; but that the absence of prominent individual does not imply the absence
of prominent family (e.g., take

√
n nodes each with

√
n neighbors with degree

1 in an equal neighbor sequence).

2. The existence of prominent individuals means that there exists a sequence of
nodes {k[n] ∈ {1, . . . ,n}}n∈N such that node k[n] possesses order n neighbors
with order 1 degree. □

We next show how the absence of prominent individuals and the notion of
one-time wisdom play a key role in equal-neighbor sequences.

Theorem 7.5.3 (The absence of prominent individuals is necessary and sufficient for
pre-uniform wisdom in equal-neighbor sequences). Consider a sequence of equal-
neighbor matrices of increasing dimensions {P[n]}n∈N. The following statements are
equivalent:

1. there is no P[n]-prominent individual,

2. the sequence is one-time wise, and

3. the sequence is pre-uniformly wise.

In other words, one-time wisdom implies finite-time wisdom and pre-uniform
wisdom for the setting of equal-neighbor sequences as well as wisdom for the setting
of primitive equal-neighbor sequences. Recall that for more general sequences, e.g.,
the setting of weighted-neighbor models, one-time wisdom does not imply two-time
wisdom (see Example 7.3.6).

Based on Theorem 7.5.3 (and specifically on the fact that one-time wisdom
implies wisdom) and Example 7.3.3 (showing an example of a wise but not one-time
wise sequence), we classify the equal-neighbor sequences as shown in Figure 7.6.

In order to prove Theorem 7.5.3 we establish some useful bounds.
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wise one-step wise
and uniformly wise

not wise

Any graph family with dmax/dmin 2 o(n)
e.g., Erdös-Rényi or preferential attachment

Fig. 7.6 Logical relations among sets of equal-neighbor sequences with varying
degree of wisdom. For each set we provide an example of a equal-neighbor sequence.

Lemma 7.5.4 (One-norm bounds). Any equal-neighbor matrix P ∈ Rn×n satisfies,
for all k ∈ N, ∥∥1

nPk∥∥
1 ≤ 2

∥∥1
nP
∥∥1/2

1 . (7.18)

Remark 7.5.5. The square root is unavoidable, i.e., it is not possible to obtain a
bound similar to (7.18) for equal-neighbor matrices that does not involve the square
root of the one-norm of P. For example, the double-star with

√
n aperture is an

example where ∥1
nP∥1 = 1/n and ∥1

nP2∥1 = 1/
√

n. □

Proof of Lemma 7.5.4. Let P = diag(W1n)
−1W for a binary and symmetric W , let G

denote the undirected graph defined by W , pick a node j ∈ {1, . . . ,n} and a constant
δ > 0. Define

N j(δ ) =
{

h ∈ {1, . . . ,n}
∣∣∣ Ph j ≥

1
δ

}
= {h ∈ N j | dh ≤ δ}. (7.19)

We now compute

Pk
i j =

n

∑
h=1

Pk−1
ih Ph j = ∑

h∈N j(δ )

Pk−1
ih Ph j + ∑

h/∈N j(δ )

Pk−1
ih Ph j

≤ ∑
h∈N j(δ )

Pk−1
ih Ph j + ∑

h/∈N j(δ )

Pk−1
ih

1
δ

= ∑
h∈N j(δ )

Pk−1
ih Ph j +

1
δ
.
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We now introduce the shorthand γ
(k)
j = ∑

n
i=1 Pk

i j for the j-th column sum of Pk and
obtain

γ
(k)
j =

n

∑
i=1

Pk
i j ≤

n

∑
i=1

∑
h∈N j(δ )

Pk−1
ih Ph j +

n
δ
. (7.20)

We change the order of summation and compute, for any h ∈ N j(δ ),

n

∑
i=1

Pk−1
ih =

n

∑
i=1

n

∑
ℓ1=1

· · ·
n

∑
ℓk−2=1

(d−1
i Wiℓ1)(d

−1
ℓ1

Wℓ1ℓ2) · · ·(d−1
ℓk−2

Wℓk−2h)

=
n

∑
i=1

n

∑
ℓ1=1

· · ·
n

∑
ℓk−2=1

d−1
i (Wℓ1id−1

ℓ1
)(Wℓ2ℓ1d−1

ℓ2
) · · ·(Wℓk−2ℓk−3d−1

ℓk−2
)Whℓk−2,

where we use the symmetry of W , and reorganize the products inside the summation.
We now upper bound d−1

i with 1, note that ∑
n
i=1Wℓid−1

ℓ = 1, and change the order
of summation so that

n

∑
i=1

Pk−1
ih ≤

n

∑
ℓk−2=1

· · ·
n

∑
ℓ1=1

n

∑
i=1

(Wℓ1id−1
ℓ1

)(Wℓ2ℓ1d−1
ℓ2

) · · ·(Wℓk−2ℓk−3d−1
ℓk−2

)Whℓk−2

=
n

∑
ℓk−2=1

Whℓk−2 = dh.

We plug this inequality into (7.20) and adopt some additional bounds to obtain

γ
(k)
j ≤ ∑

h∈N j(δ )

dhPh j +
n
δ
≤
(

max
h∈N j(δ )

dh

)
γ
(1)
j +

n
δ
.

Because W is binary, we know that h ∈ N j(δ ) implies dh ≤ δ (see also defini-
tion (7.19)). The last inequality becomes:

1
n

γ
(k)
j ≤ δ

1
n

γ
(1)
j +

1
δ
.

By selecting δ =
(

1
nγ

(1)
j

)1/2
, we obtain that each column average of the Pk satisfies

1
n

γ
(k)
j ≤ 2

(1
n

γ
(1)
j

)1/2
.

This inequality immediately implies inequality (7.18) in the theorem statement.
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We are now ready to prove the main result of this section.

Proof of Theorem 7.5.3. We start by showing the equivalence 2 ⇐⇒ 3. The fact
that one-time wisdom (statement 2) implies pre-uniform wisdom (statement 3)
for equal-neighbor sequences is an immediate consequence of inequality (7.18) in
Lemma 7.5.4. The converse implication 3 =⇒ 2 is trivially true and stated in
Lemma 7.3.1.

Next, we show the equivalence between the absence of prominent individuals
(statement 1) and one-time wisdom (statement 2). To do so, we prove the equiv-
alence between the existence of prominent individuals and the lack of one-time
wisdom. First, assume there exists a prominent individual, that is, as mentioned
in Remark 7.5.2, a sequence of nodes {k[n] ∈ {1, . . . ,n}}n∈N such that node k[n]

possesses order n neighbors in G[n] with order 1 degree. In other words there ex-
ists a constant δ > 0 such that, recalling the definition in equation (7.19), we have
|Nk[n](δ )| is of order n. Then, from the equality (7.4),

1
n
∥P[n]∥1 =

1
n

max
j∈{1,...,n}

n

∑
i=1

P[n]
i j ≥ 1

n

n

∑
i=1

P[n]
ik[n]

=
1
n ∑

i∈N
k[n]

d−1
i W [n]

ik[n]
≥ 1

nδ
∑

i∈N
k[n]

(δ )

W [n]
ik[n]

=
1

nδ
|Nk[n](δ )|.

This inequality shows that limn→∞ ∥1
nP[n]∥1 cannot vanish and, therefore, the se-

quence of equal-neighbor matrices fails to be one-time wise.

Second, assume the sequence of equal-neighbor matrices fails to be one-time
wise. Then there exist a constant α > 0 and a time N such that, for all n > N,

1
n

max
j∈{1,...,n}

n

∑
i=1

P[n]
i j ≥ α.

In other words, there must exist a sequence of indices {k[n] ∈ {1, . . . ,n}}n∈N such that

∑i∈N
k[n]

d−1
i W [n]

ik[n]
> αn. Because each degree is lower bounded by 1, this inequality

implies the existence of a prominent individual.
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7.5.1 The equal-neighbor model over prototypical random graphs

For equal-neighbor models, a sufficient condition to guarantee one-time and pre-
uniformly wisdom is:

dmax(n)
dmin(n)

= o(n), (7.21)

where dmax(n) and dmin(n) denote, respectively, the maximum and minimum degree
of the graph as a function of the network size n. Indeed, let k[n] be a vertex of the
graph and compute:

1
n

n

∑
i=1

P[n]
ik[n]

≤ 1
n

n

∑
i=1

1
dmin(n)

≤ 1
n

dmax(n)
dmin(n)

,

as n → ∞. If condition (7.21) holds, then 1
n ∑

n
i=1 P[n]

ik[n]
→ 0 as n → ∞ so that there

exist no prominent individuals.

In this section we study the Erdös-Rényi and the Barabási-Albert preferential
attachment models of random graph and we show that, using condition (7.21), they
are both one-time wise with high probability. In contexts where we have a sequence
of probability spaces labelled by parameter n (in our case the number of nodes in the
graph), the locution with high probability (w.h.p.) means with probability converging
to 1 as n → +∞. In the case of a limit property, as the case of one-time wise, to
assert that it holds w.h.p. means that, for every ε > 0, P[∥1

nP[n]∥1 < ε] converges to
1 for n →+∞.

Example 7.5.6 (The equal-neighbor model over Erdös-Rényi graphs). An Erdös-
Rényi graph G(n, p) is a graph with n vertices and with each possible edge having, in-
dependently, probability p of existing [7]. We focus on the case when p = c log(n)/n
with c > 1. In this regime G(n, p) is known to be connected and aperiodic w.h.p..
Moreover, [6, Lemma 6.5.2] implies that there exists a constant b > 0 such that
b logn ≤ di ≤ 4c logn for every node i w.h.p.. This bound immediately implies that
condition (7.21) holds w.h.p. and thus the Erdös-Rényi model is one-time wise (and
pre-uniformly wise and wise) w.h.p.. Using the fact that [6] τmix(P[n]) = O(log(n))
w.h.p., we now prove that this model is also uniformly wise. Indeed, w.h.p.∥∥1

n(P
[n])k∥∥

1τmix(P[n])≤ 2
∥∥1

nP[n]∥∥1/2
1 τmix(P[n])

= O
(

1

n
1
2

logn
)
, as n → ∞,
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where the first inequality follow from equation (7.18). □

We now present the preferential attachment model. Also in this case, it is also
possible to prove that the equal-neighbor models is one time wise and uniformly
wise w.h.p..

Example 7.5.7 (The equal-neighbor model over preferential attachment graphs). The
Barabási-Albert preferential attachment model is a random graph generation model
described as follows: vertices are added sequentially to the graph, new vertices are
connected to a fixed number of earlier vertices, that are selected with probabilities
proportional to their degrees. Specifically, assume a fixed number m0 of initial
vertices is given and, at every step, a new vertex is added and m (m ≤ m0) new edges
are added, whereby the new vertex is connected to a prior node i with a probability
proportional to the degree di of i, that is di/∑ j d j. After t time steps, the model leads
to a random graph with t +m0 vertices and mt edges. It is known [2, 3] that the
degree distribution follows a power-law, that the minimum degree is dmin(n) = m (by
construction), and that the maximum degree is of order dmax(n) ∈ Θ(

√
n) w.h.p..

The equal-neighbor Barabási-Albert model is one-time wise (and, therefore, also
pre-uniformly wise and wise) w.h.p.. This follows again by checking condition (7.21):

1
n

dmax(n)
dmin(n)

= O
(

1
n

√
n

m

)
= O

(
1

m
√

n

)
, as n → ∞.

Moreover, the equal-neighbor Barabási-Albert model is uniformly wise. In-
deed, recall from [1] that the mixing time of the Barabási-Albert model is w.h.p.
τmix(P[n]) = O(log(n)), so that w.h.p.∥∥1

n(P
[n])k∥∥

1τmix(P[n])≤ 2
∥∥1

nP[n]∥∥1/2
1 τmix(P[n])

= O
(

1
n1/4 logn

)
, as n → ∞,

where the first inequality follows from inequality (7.18).

Finally, we consider a super-linear preferential attachment model. Notice that
the Barabási-Albert model is a linear preferential attachment in the sense that the
probability of choosing a node in the network is linear in the degree of the nodes.
If we consider a super-linear model with a probability of the form ∼ xp with p > 1,
then it is known [13] that there exists, w.h.p., a node with degree of order n, while all
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other nodes have finite degrees. It follows that a sequence of prominent individuals
exists in large populations and that, by Theorem 7.5.3, the super-linear preferential
attachment model is neither wise nor finite-time wise. □

7.6 Conclusions

This work furthers the study of learning phenomena and influence systems in large
populations. Our results provide an alternative and, arguably, a bit more realistic
characterization of wise populations in terms of the absence of prominently influential
individuals and groups. Future work includes extending these concepts to influence
systems with time-varying and concept-dependent interpersonal weights and to other
opinion dynamic models.
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Conclusions

In this thesis we studied two cooperative networks for multi agents systems. The
first one is a decentralized cloud storage model for which we give an algorithm that
ensure the complete storage of the data of the users through the use of evolutionary
game theory. For this algorithm we prove its convergence properties and study some
variants including the reciprocity process and the possibility to allocate multiple
copies of the data. On the other hand, the second part of this thesis deals with the
definition of new concepts of wisdom of crowds: finite-time wisdom and uniform
wisdom. For this notions we give a characterization and a wide set of examples that
corroborate the theoretical analysis.

In the next to paragraphs we emphasize on our results and we present some
further steps in both the topics.

The decentralized cloud storage model. In this thesis, we have analyzed an
allocation algorithm which allows a network of units (computers, smartphones or
any other device with storage capabilities) to use the memory space available in their
neighbors to store a back up of their data. The interest for such an algorithm comes
from the goal of creating a peer-to-peer decentralized cloud storage model to be
thought as an alternative to classical centralized cloud storage services.

We have proposed, in a game theoretic framework, a peer-to-peer decentralized
storage model where a network of units are, at the same time, end users needing to
allocate externally a back up of their data, as well storage resources for other users.
We have proposed a novel fully distributed algorithm where units, connected through
a network, activate autonomously at random time and either allocate or move pieces
of their data among the neighboring available resources. Actions taken by the units
are noisy best response actions with respect to utility functions which incorporate



the congestion of the resources, their reliability, as well possibly, the fragmentation
of the stored data.

The proposed algorithm is based on evolutionary game theory. The main theoret-
ical contribution has been to prove convergence and to give en efficient characteriza-
tion of the asymptotic in terms of an explicit invariant probability distribution picked
on optimal Nash equilibria.

We have presented and mathematically analyzed a decentralized allocation al-
gorithm, motivated by the recent interest in cooperative cloud storage models. We
have proved convergence and we have shown the practical implementability of the
algorithm. The tuning of its parameters to optimize performance will be considered
elsewhere. In this direction, it will also be useful to investigate the possibility to use
different utility functions in the definition of the algorithm, following the ideas in [4]
and [6].

We have also carried on a number of simulations showing the good scalability
properties of the algorithm, its reduced complexity and illustrating the nice features
of the final allocation state.

Moreover we find explicit bounds on the convergence time of the algorithm and
extend to the case when multiple back up copies are needed to be stored with the
further security constraint of using different resources for different copies.

We believe that there are several challenges related to the peer-to-peer storage
model which have not yet been satisfactorily addressed by pure mathematical model.
Among these:

• The structure of the Nash equilibria for general topologies is not completely
clear; a more deepened study is needed.

• Units, in our model, are completely anonymous and resources do not make
any filter on new allocation requests. More interesting models should incorpo-
rate trust formation mechanisms where more trusted units (when thought as
resources) should have a vantage in finding place to store their data.

• In our approach the quantities to be allocated are fixed but a reasonable
extension should be to include time variable amounts of data. Clearly if this is
the case, the allocation condition must remain satisfied.



• Another aspect that worth the study is to consider a time varying graph: for
instance, it can happen that users decide to explore the graph to choose more
reliable resources. In this case, it would be of interest to answer the question
of how the algorithm would behave.

• A natural extension of our analysis in this game theory setting is to study the
price of anarchy and the price of stability to ensure that the solution is close to
the global welfare. These quantities are widely studied in literature [3, 7] and
represent a way to measure the goodness of an algorithm.

• Our approach is strictly case dependent but the evolutionary game theory
approach is quite general. To make the algorithm more valuable different
utility function or different case study should be studied and analyzed.

• Regarding our case-dependent approach, it would also worth studying a more
general approach for instance including this work in the asset of generalized
Nash equilibrium problems [2]. This class of games concern constrained
problems for which neither a classical game theoretic approach nor an op-
timization algorithm are easily applicable. We believe that our noisy best
response dynamic can be an answer to this kind of problems.

Wisdom of crowds. This work furthers the study of learning phenomena and
influence systems in large populations. We introduce and characterize new notions
of wisdom in finite time and uniformly in time. Moreover, our results provide an
alternative and, arguably, a bit more realistic characterization of wise populations
in terms of the absence of prominently influential individuals and groups. Future
work includes extending these concepts to influence systems with time-varying and
concept-dependent interpersonal weights and to other opinion dynamic models. To
this aim, we already start the analysis of the Friedkin-Johnsen model that clearly
needs a more accurate characterization. Moreover there are some other steps to be
done, both in the analysis and in the extension of this concepts. For instance:

• Complete the characterization of the notions of finite time wise and uniformly
wise for direct equal neighbor model and find more realistic examples in this
direction.



• Since there can be found in literature [1, 5] ways to influence the PageRank in
a web network it would be of interest to understand under which conditions
this influence affect also the wisdom of a crowd (both in finite time and in its
asymptotics).
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